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discussion concerns discrete variables and one-way continuum variables.
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§ 1. Introduction

I should begin by forewarning the reader. I am to be concerned with 
measurements in physics, but will be in danger of conjuring up mathematical 
fictions rather than events of the real world, since the measurements are 
conceived in terms of probabilistic Gedankenexperimente. However this 
may be, the main purpose of the study of measurements is to obtain a 
stepping stone to fundamental concepts and methods in the dynamics of 
physical systems.

The present paper has, apparently, a simple pattern. The introduction is 
mainly concerned with a classification of fields and measurements, and the 
equations of motion are mentioned briefly. One class of measurements is 
that where the field remains independent of a measurement, as treated in § 2. 
At first I discuss direct measurements of an independent field, a subject 
connected with familiar mathematical statistical methods, like the simple 
theory of errors. Next, from the measurements one may want lo determine 
the independent field al earlier and later times, and we shall look into the 
interesting difference between the two cases. Above all, measurements of 
independent fields lead directly to degradation functions, like entropy, as 
measures of probability, but in a more general sense than usually conceived. 
In fact, as shown in § 3, functions like entropy are not absolute measures 
of a probability field but only relative measures of one field with respect to 
another one. One absolute function of the field docs exist, however, if the 
equations of motion are time-independent. In the second class of measure­
ments the field depends on the measurement, as discussed in § 4. For suc­
cessive measurements the properties of Markov chains are obtained in the 
simpler cases. Dependent fields give possibility of analyzing a basic situation 
in statistical mechanics, and it is shown how irreversible equations of motion 
can result in time reversibility in equilibrium.

The first subject mentioned above, i.e. the familiar direct measurement 
based on the theory of errors or similar statistical methods, turns out to 
contain unsuspected and treacherous pitfalls. This is because probability 
statements in measurements are not the desired ones about the unknown 
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field. Such problems are well-known in mathematical statistics but mainly 
ignored in physics; they have led to a schism connected with a celebrated 
suggestion by Bayes. It is necessary, therefore, to look into the probability 
content of basic measurements. In order not to confuse the main issue of 
this paper, I have stated the relevant results briefly in § 2. The detailed 
analysis is postponed to § 5, where it is shown how measurements can yield 
probability statements as regards the parameters in the theory.

It might be asked why one should discuss, in such detail, abstract 
measurements as well as an abstract theory, with emphasis laid on probability 
and irreversibility. A general reason — already inherent in the question — is 
that probability in physics, primarily in statistical mechanics but also in 
quantum mechanics, gives rise to much more serious and profound problems 
than often envisaged. I need not remind of the remarkable differences in 
point of view in Boltzmann’s and Gibes’ treatments of statistical mechanics, 
of the discussions between Einstein and Boiir on quantum theory, or of the 
more recent information theory approach where the existence of an absolute 
entropy is claimed before the laws of physics are invoked. It should be 
emphasized, however, that any measurement is intimately connected with 
probability and constitutes by itself an irreversible process. On the one hand, 
if one wants to analyse the basic interpretation of quantum theory it is 
particularly important to account consistently for probability concepts and 
for irreversibility. On the other hand, for practical purposes it is usefid to 
formulate a simple general theory, even though it necessitates somewhat 
abstract concepts. I am well aware that these remarks are somewhat scattered, 
and that the following discussion loo consists of scattered solutions of the 
major problems aimed at.

Terminology and equations of motion

It might be useful, before completing the introductory discussion, to explain 
some basic concepts and terminology connected with the equations of motion of the 
field. The term ‘statistical dynamics’ is meant to indicate that there is an arrow on 
the time variable in the equations of motion, and that a field usually has conservation 
and is non-negative. The general description is discussed in detail in a previous 
paper12), in the following referred to as SSD. I do not invoke the Hamiltonian 
equations of motion but use a more general formulation where irreversibility is 
explicit. If so desired, the reader may consider it as retarded solutions of the equations 
of motion, as exemplified by Brownian motion of a Hamiltonian system.

We are concerned with a coordinate variable, which may be discrete 
(j = 1,2,3,. . .n), or continuous. Consider, for definiteness, a discrete variable and 
introduce an initial field Ä = (A1,A2,A3, . . . ,An) where A; > 0 and ^Aj = 1. In a 

1 
linear theory, a final field ä = (u1,a2,o3, . . . ,an) is then determined by A and by 
transition rates T^j from state j to state k by
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ä = T ■ A, or ak = ^TkjAh 
i

(1.1)

where we must assume Tkj> 0 in order that ak > 0, and ^Tkj = 1, so that ^Gik = 1.
k k

The propagator T should be considered as resulting from equations of motion of 
type of 

(1.2)

where Gkj{t') > 0. In (1.1) the fields A and ä can then be, respectively, ö(/') and 
ö(f'), t" > C, so that Tjcj = Tkj(t",t'y In the case of continuum variables the above 
equations remain valid if j-+x', k -> x", so that e.g., T = T(x" ,t" ;x',t') and 
ak(t) -> a(x,t). If the coefficients G in (1.2) are time-independent, the propagator is a 
function of the time difference only, T = T(x",x’,t" — t'), and there is a unique 
equilibrium for indivisible systems (cf. SSD). A main point is that T(x",t" ;x',t') 
does not exist for t" < t', and for discrete variables the propagator Tkj does not 
fulfill the rule of non-negative fields when t" < t'.

Note that the variable t need not be time, so that any one-way variable will do 
as well. One example is the path length moved by a particle suffering collisions and 
being possibly slowed down. Transformations between one-way variables are ex­
hibited in § 5.

Measurements and interpretation of fields

Measurements are irreversible processes. I shall not here investigate 
this basic aspect of measurements but only note that it is not at variance 
with the above-mentioned irreversible equations of motion. The problem 
with which we shall be concerned is the probability property of measure­
ments. In fact, in the following it will be supposed that a measurement is a 
more or less imperfect sampling, in the sense of mathematical statistics. 
Though plausible, also this assumption would seem to require an explanation, 
concerning its consistency and its connection to the theory of physics. I 
refrain from a closer discussion but, in part, the consistency will be eluci­
dated.

It is usefid to make a classification of measurements, and of the field to 
be measured. First, one may want to find from a measurement the immediate 
value of the field, ä(t). This is clearly the simplest case, and there is also 
little difficulty in finding from it the field at a later time. Second, in many 
physical problems one asks preferably for a previous field ä(t - t), as 
introduced above. One is here up against the difficulty that, whereas 5(f) 
may be determined from ä(t - r) according to (1.1), the inverse determin­
ation of ä(t - t) is not straightforward, mainly because a propagator 
backwards in time does not exist. There is thus no symmetry between past 
and future, and it becomes more difficult to predict the past than the future.
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As to the interpretation of the field, ä = â(f), and its relation to measure­
ments, one may meet with several situations. We confine the discussion to 
two major cases. In these classifications I distinguish between properties of 
the measurements and properties of the field. The distinction is convenient 
but not strictly correct. In the end, most of the properties of the field, like its 
independence, are determined by the measurement and by the parameters 
one decides to measure.

Independent field

In one type of field measurement the field remains independent of the 
measurement. A familiar phenomenon of this kind is an incoming current 
of identical, but independent, particles, which suffer collisions in a gas. 
The incoming current is supposed to have a steady probability distribution in 
space and in momentum. One measures each time on a new particle, but 
on the same probability distribution. A similar example of independent 
fields is observations of the spectral distribution of electromagnetic radiation 
from a star.

One may perform measurements at various time instances and collect 
information about the field. By time is meant the independent one-way variable 
of the field, e.g., the path length moved or the time variable for each particle. 
The spatial variable of the field can be coordinate space, momentum space, 
or phase space; and it may alternatively be considered as a discrete variable, 
for instance when counters are used. Each measurement concerns a new 
particle whose behaviour is independent of the others but governed by the 
same field a(.r,f). The theory of independent fields is discussed in § 2.

Dependent field

In the second case the field depends on the measurement. Consider the 
above-mentioned current of particles through a gas, or a Brownian motion. 
One may measure the generalized coordinates of a particle at a certain time, 
and ask for the new probability distribution of it at subsequent and even at 
prior times. This case is to be discussed in some detail. However, this case 
may also be conceived in a more general way. The ‘particle’ may be a small 
or large physical system and its distribution is then the ensemble of Gibbs, 
but now governed by explicitly irreversible equations of motion. From a 
mathematical point of view the measurements of dependent fields can have 
connections to Markov processes, as we shall see. Measurements of a de­
pendent field may alternatively be considered as preparations of a system 
in a more or less well-defined state. But it should be remembered that the 
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basic preparation of systems, before performing experiments, is to let them 
achieve equilibrium, whereby a quite definite state is obtained with compara­
tive ease. The dependent field is treated in § 4.

The above division into classes of fields and measurements appears to be 
useful. Still, in actual measurements one may be concerned with, say, a 
mixture of independent and dependent fields. Thus, in measurements of 
Brownian motion, Svedberg observed the number of particles in a small 
volume al successive time instances. For particles which enter the volume 
one is concerned with the independent field, while for those which have been 
observed it is the dependent field.

Usually, the field is normalized to unity or to a certain particle number, 
and so is the measurement. This holds particularly for the case of dependent 
fields. But often the field or the measurement does not represent a fixed 
number of particles. Fields of this kind correspond to the grand ensemble of 
Gibbs, with particular mathematical simplifications. Measurements without a 
fixed number of particles are familiar in the form of Poisson distributions.

§ 2. Measurements of Independent Fields

The concept of measurement of independent fields was explained in the 
introduction. In some respects this case is the simplest one. In fact, when the 
field is independent one may perform an arbitrary number of measurements 
of the same field, and none of the results will be influenced by any of the 
others. I consider primarily the simpler case of measurement of the im­
mediate field ü, but will lake up measurements of previous and later fields at 
the end of this chapter.

Probability by measurement of immediate field

Direct measurements of an independent field are closely connected to a 
subject treated extensively in textbooks on statistical methods and probability. 
Furthermore, if one is concerned with a large number of recordings there is 
little difficulty in interpreting the results in a straight-forward way. Yet, the 
simple measurements contain a celebrated problem and other difficulties 
which have to be discussed and clarified, because of their importance to 
measurements in physics. These difficulties arise since a normal statistical 
statement gives only the probabilities of various outcomes, assuming the 
parameters (the field d) to be known. In a measurement, on the contrary, one 
wants a statement, possibily a probability statement, as regards the unknown 
parameters for a given outcome. I call this the question of inversion of 
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probability. The question was raised by Bayes in 17631) but even in present 
mathematical statistics there are several schools of thought about it.

In order not to confuse the main issue of the present paper, I now give 
merely a summary discussion of the direct measurement, with preliminary 
statements as to the inversion of probability. A more detailed analysis is 
necessary but it is postponed to § 5, at the end of the paper.

The discussion of measurements is rather different for fields, ajc, depend­
ing on a discrete coordinate variable, and fields n(.r) with a continuum 
variable. For the present I confine the discussion to discrete variables, 
where the number of unknown quantities to be determined is explicitly 
finite. The field is ä = (aba2, ■ ■ ■ ,cin), ^at = 1, and thus any function, ft, 
depending on the discrete variable i has a value (average) = Nf-cii.

The elementary measurement is taken to be a single count in one of the 
n places. To the z’th outcome is ascribed a probability, assumed to be given 
by the number a/. Let N elementary measurements be performed. The basic 
assumptions are that the measurements are independent and indistinguish­
able. From independence it follows, first, that all measurements have the 
same probability field ä and, second, that the probability of a composite 
event is the product of the individual probabilities. It is thus possible to 
assign a probability to every set of measurements. The assumption of 
indistinguishable measurements is merely a simplification, implying that any 
ordering of the events is immaterial and that only the total number of 
recordings, Ni, in each of the n places is of significance. Thus, it follows that 
the result of N measurements*  is completely specified by N = (NltN2, . ■ -, 
Nn), where Ni = 0,1,2, .. . and = N.

* Note that the distinction between a single measurement and TV measurements is usually 
a convention. The N measurements may be conceived as, and may actually be, a single measure­
ment, i.e. one N-measurement.

From the above it can be concluded that the probability of N, for given 
ä and N, is the familiar formula

Again, a function f(N) has a value given by f(N)I^,N(N), the
summation being over all N belonging to N. In particular, it is observed 
that (2.1) implies (Ni/N) = at. The main significance of (2.1) is the rules of 
probability contained in it. In addition to the discussion above, it may be 
mentioned that (2.1) obeys the rule of additivity of probabilities. Thus, (2.1)
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is one of the terms in (ar + a2 + . . . + an)N = 1N, and here one can join 
elements, u12 = + a2, if the counts are joined, N12 = + N2.

These remarks are meant to illustrate the uniquely defined properties of 
probabilities for outcome of measurements. The main features are those of 
mass distributions. It is not necessary to invoke a connection between 
probabilities and frequencies belonging to real measurements. Instead, in 
the mathematical limit of N -> °o the numbers Ni/N converge towards at, 
since according to (2.1) ((NilN')s'} -> a®, for s > 0.

The measurement described by (2.1) concerns a fixed number of 
counts, N. It is often convenient to relax this bond. Calculations can be 
simpler if the Ni are completely independent. In fact, many physical 
measurements are just of this kind. Thus, one may have n identical counters 
measuring intensities of a scattered beam. The intensities are proportional 
to ai. If all counters are open during the same time interval, the individual 
countings are independent and have probabilities Pa^M^Nj), where

A.,,mW) - ./ - 1,2,.. .,n. (2.2)
j Ay!

The probabilities (2.2) are the familiar Poisson distributions. The total 
probability is

_ « (A/ay)^
Pd,MW = n Pa^W) = e~M n —v . (2.3)

which formula is not unlike (2.1). The parameter M is also the total average 
number of counts, M = 2(Ary), an(l proportional to the time during 

j
which the counters are open. The measurements (2.1) and (2.2) are analogous 
to the statistical mechanical concepts of petit ensembles and grand ensembles, 
respectively.

Distribution of immediate field from measurement

I now turn to the actual problem of inversion of probability, i.e. the 
possibility of a probability statement as regards ä for a given observation N. 
It should be emphasized from the start that the experiment stated in (2.1) 
does not—when unmodified — allow of unique inversion of probability. In 
§ 5 it will be shown how a slight modification leads to inversion of probability, 
and also how inversion obtains in the continuum case without modification 
of the experiment. The aim here is merely to quote from § 5 the results as 
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regards inversion of probability, for a discrete variable. Still, it seems 
appropriate to accompany the formulae by qualitative arguments which, I 
hope, make the results plausible. In addition, such arguments emphasize 
that, for large Nt, there is little difference between the various points of view 
on inversion.

Suppose for simplicity that n = 2 in (2.1), so that there is only one 
parameter, o1, since a2 = 1 — ar. In the limit of large ;V, the formula (2.1) 
then becomes

exP

where o-2 ~ (1 - a^/N — (W1/ïV)(1 - iVj/ïV)/?/ may be considered as
a constant. If N-JN is taken to be a continuum variable, the distribution 
is Gaussian in the variable ax — N-JN, and thus the unknown parameter <z1 
has a Gaussian distribution about NJN.

Because of the above asymptotic results, the direct probability (2.1) will 
in some respects correspond to a probability of ä for given N. Introduce 
therefore a factor taking account of this contribution,

Lj^(«) = af‘a^‘ . ... a%n = exp( J A'j-log^). (2.4)
1 = 1

The quantity L in (2.4) is often called likelihood, a term introduced by 
R. A. Fisher8), in order to emphasize that one is not concerned with a 
probability. But in contrast to the original notion of Fisher, the likelihood 
is here part of a distribution of the field ä.

The differential distribution af ä may be written on the form, cf. (5.22), 

da 2
a 2

(2.5)

where the d-function takes care of the bond between the values of at. The 
integral of (2.5) over all values of m (0 < a/ < 1) is normalized to unity.

Write next P as
Av(â) = C-Ljÿ(â)-m(â), (2.6)

where u;(ä) is an uncertainty factor and C accounts for normalization.
The distribution Pÿ(a) is bracketed within a relatively narrow interval 

of probability distributions. This is expressed by the uncertainty factor m(d) 
in the following way
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where

tu (ä) = af1 ap .... a^n,

2 = i, o < ^ < i.
i = 1

The value of the normalization constant C in (2.6) is seen to be

C(N + £') =
C(n +

/■< .v, t .■-■,)/■( .v.. + e2)... r(Nn + £»)'
(2.8)

The factor w thus represents an uncertainty in the probability, but the 
uncertainty is usually quite negligible. Its magnitude can be ascertained in 
the estimate of any average by varying £ in (2.7).

Note that the distribution PN(a), according to (2.4), (2.5), (2.6), and 
(2.7), obeys the same rule of composition as (2.1). Thus, if ax and a2 arc 
combined to one variable, a12 = cq + a2, by integrating away one variable 
in (2.5), then one obtains again the same formulae with one variable less 
and N12 = A7X + N2, as it should be.

In the following I make use of the likelihood (2.4) with C = C(;V) as a 
sufficiently well-defined representation of inverse probability, the small 
uncertainty in w being tacitly understood.

Degradation functions and accuracy of field

The likelihood represents approximately the probability of a field 
ä for a given measurement N, when zV is large. It may be reformulated 
in the following way. Let v = (v1,v2, . . . v«), such that = 1, introduce a 
quantity Sÿ(â') by

Cl= 2 vi lo8 J (2.9)
j = 1 vi

and call it the relative entropy of a with respect to v. The relative entropy is 
equal to zero only when cq = Vj for all j, i.e. a = v. If we introduce Vi = 
Ni/N, and disregard the uncertainty factor iv, we can express the distribution
(2.5),  (2.6) in terms of the likelihood

Pfi(a) = cWLfi(a) ~ exp(NSÿ(a)). (2.10)

When A’ is large one finds that (2.1), from Stirling’s formula, is also 
represented by (2.10). It is obvious that, when A7 becomes large, the field ä
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and the measured frequency v deviate less and less from one another. In 
this limit we may expand in (2.9), assuming v » d, and find

- 4(i -2(«^/)1/2)-
;

(2.11)

The above formulae may be used to find how closely an Admeasurement 
determines a field. To this end suppose that the field is ä. We make an 
Admeasurement with outcome N, and obtain a normalized likelihood 
7j>j^(d/) = ('(N)-L^(a) for the field being a. If we average over all 
possible outcomes AT with normalized probability (2.1) and = N, we 
find the probability of a , for a given d. Thus

A'! (A7-l)! I
ä^a) (A\- l)! . . . . (aC-1)! (2.12)

• («!«!)**  .... (ana„)Nn.

Introduce here Stirling’s formula in the form Ad = (2?rA'r)1/2 Ar2ve_'y, and 
neglect small terms which are in fact of order of magnitude of the uncer­
tainty in iv.

The important thing to notice is that (2.12) is symmetric in d and a, 
and since only one degradation function, (3.4), is symmetric in the variables 
we should use that, i.e.

7/-1/2)(d') = SC»»««)172- (2-13)
i

In fact, introduce in (2.12) the quantity oq = (ajtq)1/2/(2 (a£a*) 1/2)’ where 
= 1, and find

j / y \2Ni
Pä(a) - 2 (2.)—1 n r yz • «1/2) (ö'))2Ar,

Nj i \ Ni J

or, replacing the summations by integrations over = Nt/N,

h(B’) - (D^>(å'))2x ~ exp{- (â'))} 1

= exp { - A’2 (a|/2 - nJ1/2)2}. I
i

It is not surprising that (2.14) is essentially the square root of (2.10) if 
Ui is replaced by v/. Eq. (2.14) was derived on the assumption that N is 
large. But in this limit is close to at, and then the uncertainty implied 



Nr. 1 13

by w{a') in (2.7) becomes quite small. Therefore, (2.14) closely represents a 
probability and the small uncertainty may be estimated. One may thus use 
(2.14) to find how large N has to be in order that a given accuracy obtains.

If a Poisson measurement (2.2) were used instead of the Admeasure­
ment, the calculation would be slightly simplified. Still, the main result, i.c. 
the appearance of Z)(“1/2), comes about in a surprisingly simple way in the 
above derivation of (2.14).

From the result (2.14) it may be concluded that degradation functions 
like (2.13) should tend monotonically to unity with time. Thus, suppose 
that one chooses to make an Admeasurement, with a very large value of N, 
in order to be able to distinguish between two fields ä and ä'. Let the fields 
obey the equation of motion (1.2). Such equations of motion contain a 
smearing of the fields so that with increasing time it should become less 
easy to distinguish between them. One expects therefore that an Admeasure­
ment gives inferior distinction if performed at a later time instant. But this 
means that D(_1/2) jn (2.13) always tends towards unity. In fact, this mono­
tonic behaviour is proven generally in § 3, cf. (3.13).

Independent field before and after measurement

In this section it is still assumed that an Admeasurement is performed 
at time t. Willi given equations of motion one asks for statements as to the 
fields at earlier and later times, Io be called respectively the previous and the 
later fields.

Consider the simple case of the later field. Let the field at time t, ü(Q, 
have a given distribution, e.g., (2.5). The later field, ö(/ -I- r) with r > 0, 
is easily obtained, because it is uniquely given by the propagator of the 
equations of motion, (1.1), ä(t + t) = T(t + r, Q • o(Q. Indeed, the 
estimate of the value of any function f(ä(t + t)) is obtained as an average 
over (2.5), i.e. </*(  7’(f + t, f) • «(/))>.

Quite apart from such results, the mere fact that / + t is later than t 
reduces the freedom of choice of 5(t + r). Consider thus the two differential 
volume elements d(n)a(Q = dfiqQ)- da2(f) • • ■ • d«n(0 and its time trans­
form d{n)a(t + t). Because of the linear equations of motion their connection 
is established directly. Note that the ô-function in (2.5) may be left out 
because it is conserved, the sum ^ai being a constant of the motion. From 
(1.1) the volume elements are found to be connected by the determinant of 
the propagator matrix,

dwa(t + z) = \T(t + r,t)\dwa(t), (2.15)
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where it is readily shown that
|T(f + r, QI =-■ exp!- 2

I k + / J t J

Nr. 1

(2.16)

For time-independent equations of motion the determinant (2.16) decreases 
exponentially with r,

I T(t + r,t) I = expl-t 2 4 (2.16')
I s = o I

?.s being the eigenvalues of the equation of motion, cf. SSD.
It follows that the available volume in ü-space shrinks with time, decreas­

ing exponentially according to (2.16') and exceedingly fast when n is 
large. Moreover, the equation (2.16') indirectly expresses the fact that, 
whatever the initial field ö(0, the later held for large r must approach the 
equilibrium field d°.

More delicate problems arise in connection with determination — from 
a measurement at time t — of a previous field, ü(t - t), where therefore 
ä(0 = T(t,t - P)ä(t - r). One difficulty is that the inverse propagator does 
not exist, as is more obvious in the continuum case. In the discrete case, the 
equations (2.15) and (2.16') make it clear that if the field did exist at time 
/ — T, the measured field at time t has a strongly confined region of permis­
sible values.

Another difficulty is that the field at time t is itself influenced by the 
previous existence of the field. In the extreme case where the field is known 
to exist at time —co, the field at t must be the equilibrium field d°, and it 
would be futile to attempt a measurement, unless the equilibrium is unknown. 
Suppose instead that the field is known to exist at time t - t. In attempting 
to find <7(0 one should in (2.5) express this field in terms of the unknown 
ü(t - t), the differential volume element being given by (2.15). Therefore
(2.5) becomes

P N(T(t, - r)) • I T(t, / - t) | a(t - r) •
n

• - t) - 1)- n {2Tf(G^ - 7)-0z(t - t)}_1,
i j = 1 I

stating indirectly the distribution of <7(0.
As to the determination of the field at earlier times, the distribution of 

the field al I - r is given directly by (2.17), unless it is known to exist before 
t - T. Look apart from the latter subtlety and suppose also that N is large
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so that the likelihood (2.4) gives the dominating probability factor. The 
probability for ä(t - t) is then essentially given by (2.10), i.e.

C(N) • LÿÇ T • a(l - t)) exp
n

N 2 Vjlog

n
2 Tjk(t,t - r)a*(f  - r)

Ä = 1 (2.18)

where vj = Nj/N.
These brief remarks were meant to indicate the problems connected 

with previous fields, when the fields are independent. But such cases are 
quite common in practical measurements, and ad hoc procedures are often 
used for their solution. A basic property of ä(t - r) is that its components 
are non-negative, and any prescription which takes account of this can give 
quite good estimates.

For dependent fields, the corresponding questions of earlier and later 
times have somewhat different implications, as discussed in § 4.

§ 3. The Relative Degradation Functions and Their Change with Time

It seems proper to indicate a few of the reasons why it may be re­
warding to undertake the following, somewhat lengthy, study of relative 
degradation functions (cf. SSD) and their time behaviour.

First, we have already seen that several of the degradation functions come 
into play if we make a measurement and ask for the probability of a field, 
or if we want to distinguish between two fields by a measurement. The 
degradation functions in question were relative in the sense that they 
measured one field with respect to another one. Now, we were also concerned 
with the change in time of fields, where the irreversible equations of motion 
must lead to a smearing of fields, so that in some sense they approach each 
other. The quantitative expression for such a tendency, if it has a meaning 
at all, should apparently be sought for in the degradation functions. Again, 
the tendency should not depend on the existence of an equilibrium distribution 
or on time-independence of the equations of motion.

Second, in statistical mechanics the function entropy is used extensively 
and connected to absolute probabilities. In the theory of information the 
entropy is often claimed to be a unique measure of information, and this 
has been used as a basis for an alternative approach to statistical mechanics. 
It seems important to investigate such claims, and to look into the role of 
the other degradation functions since they have the same general properties 
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as entropy. To this end, the time behaviour of the functions will be studied 
on the basis of quite general equations of motion.

It turns out, above all, that neither the entropy nor the other degradation 
functions have consistent meaning if regarded as absolute functions; they 
are relative functions measuring one dynamic field with respect to another 
one. The reader may also notice that the preceding discussion of measure­
ments, albeit idealized ones, led to relative degradation functions only.

Degradation functions

I now attempt a precise discussion of the degradation functions. This 
family of functions was derived in SSD. They are averages of functions 
depending on the field a, with the property of separability for independent 
systems. In SSD we considered only degradation functions for the equilibrium 
field with respect to a time-dependent field. Since I now drop the assumption 
of time-independent equations of motion, an equilibrium field does not 
necessarily exist. Consider continuum variables—-discrete variables being a 
special case of this — and introduce the relative degradation function of n’lh 
order for the field a2(x,f) with respect to a1(æ,f),

(«2(^.0) = J, -oo < n <«>, (3.1)

where the integration extends over the total volume, and where, as indicated, 
7i is any number on the real axis. The functions ar and a2 are positive and 

a1(x,t)dx = f a2(x,f)dx = 1. (3-2)

It may be noted that
(3.3)

and, in particular, the only symmetric function is

öt1/2)(a2) = dx{a1(x,t)a2(x,t)}1/2. (3.4)

Because of (3.2), the degradation functions with — 1 < n < 0 are 
always finite. For other values of n the functions may initially be infinite, 
corresponding to one of the fields being zero in a part of .r-space. The 
degradation functions D(0) and are equal to unity, representing only 
normalization. At these values of n the entropies appear. Thus, consider the 
relative entropy
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r «2(a?, O
^(«2) = c/.ra1(.rj)log—-—-. (3.5)

J <71(æ, t)
It is alternatively given by

S«.(a,) - (3.6)

Beside the familiar entropy (3.5) and the symmetric function D(_1/2) 
in (3.4), special mention should be made of one further degradation function. 
If the order is n = 1 in (3.1), one gets the simple result

This function is used extensively in mathematical statistics,8«6) and is 
often called the %2-function. The field ax is then—in the discrete case — a 
measured frequency, while a2 is a probability field.

Some inequalities are immediately found for the degradation functions. 
They are all equal to unity if and only if ar = a2, and generally

4)lw)(a2) 1» f°r H > 0 or n < — 1, I
(3.7) 

0 < 7J^)(a2) < 1, for - 1 < n < 0.

This may be shown by means of an auxiliary function where n is a 
real number,

/■„(O - ^” + 1-(n + l)(f-l) -1. 0 < S <», (3.8)

so that fn = 0 for £ = 1. Obviously, when £ + 1,

> 9, if n > 0 or if n < — 1, I
(3.9) 

fn($) <0, if - 1 < Ji < 0.

Since D^(az) = Jda:a2/n((z1/a2) + 1, and since the D-functions are 
positive, the inequalities (3.7) follow from (3.9). It is seen from (3.7) and
(3.6) that Sai(n2) < 0.

Time dependence

Consider equations of motion of type of (1.2) in a continuum space with 
arbitrary dimensionality, cf. also SSI),

Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 1. 2
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d
dl

G(x,y, t)a(y, t) - G(y,x, t)a(x, Øj, (3.10)

where G is non-negative. In case of a differential equation in space, it can at 
most be of second order, i.e. of type of a diffusion equation. The bonds on 
the possible linear equations (as expressed by (3.10) with G > 0) arise 
when a(.r,f) is required to remain non-negative and to have conservation 
(3.2). Demand, for simplicity, that the system is indivisible, which means 
that any point x' within the system communicates with any other point x", 
so that it cannot be subdivided into independent parts.

We ask for the time derivative of a degradation function (3.1). It contains 
the time derivatives d1(.r,f) and a2(x,t), for which we insert the values 
given by (3.10). If G(y,x,f) is taken outside as a common factor, the function 
fn from (3.8) obtains directly, and we get

d .. f f (ai(y,/)lnl
^^iUoC^sGw/)) = - j ctej dyG(y,x,t)a1(x,ty.-^-^ -fn^\ (3.11)

where
rz1(.r,/)u2(y,/)
a2(æ,0«i(i/,0’

(3.12)

It follows then from (3.9) that, unless Oj ~ a2,

d , .
(a2) < 0’ l°r 11 > 0 or 11 < — 1’

d , x— > 0, for - 1 < n < 0,

d
and dtSaXa2) > 0.

(3.13)

The above demand of an indivisible system is a sufficient condition for 
the validity of (3.13) but not by far a necessary condition. A weaker, and 
still sufficient, condition is that for any pair (x ,x") at least one of the points 
communicates with the other one. This includes one-way systems like (5.7). 
In any case, equation (3.13) has rather general validity in statistical dy­
namics, including lime-dependent equations of motion and other systems 
without an equilibrium. It applies for Brownian motion, and the only 
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notable exception is a first order differential equation in the space rr. This is 
essentially the Hamiltonian equations of motion in phase space, for which 
all degradation functions remain constant in time (cf. SSD).

Ambiguity of absolute measure of information

Consider the question of entropy as a measure of information. For de­
finiteness suppose that we are concerned with a discrete variable, j = 1, 2, 
. . . , n, with corresponding probabilities p;, and that to these belong an 
absolute measure of information equal to H, where — H is statistical en­
tropy, II = ^pjlogpj, cf. e.g., Shannon17) or Jaynes9). Now, it is perfectly 

permissible to let any equation of motion, such as (1.2) or (3.10), act 
upon the p7. This means that there is a transmission through some medium 
with a slight smearing of the distribution in question, and it must be de­
manded that the measure of information cannot increase by such processes. 
In order to see clearly the ambiguity in H and in dH/dt, introduce another 
function sp(P) = -'^PjïogÇpjlPj)- Put Pj = 1/n, so that sp(P) is equal to 

y
—H plus a fixed number (logn) for any value ofpj.We find the time behaviour 
of sp(P) by letting both p; and Pj change with time according to the same 
equations of motion (3.10). Then we have a function which can only in­
crease with time, according to (3.13). Returning to the original H, i.e. a 
function only of p7, we observe that H does not necessarily decrease; it may 
just as well increase. This implies that H cannot be used as an unambiguous 
measure of information. The relativity in entropy is also seen easily for a 
continuum variable, rr, already because arbitrariness in the choice of variable 
(replace x by e.g., y = .r3) necessitates a comparison of p(.r) with another 
field, P(x).

For physical systems a definite description can obtain. Thus, if the 
equations of motion are time-independent and the system is confined to an 
energy shell, there may be only one equilibrium distribution, i.e. P = const, 
within available phase space or quantum states. Entropy can then measure 
a distribution relative to equilibrium. But just for this reason entropy does 
not determine the equilibrium distribution (in contrast to the 0-function, 
cf. below).

The above does not mean that the results in the theory of communication, 
as based on an //-function for coding frequencies, are in error but only that 
they can not be used universally, in particular as regards connection to 
entropy. The criticism applies, however, if one turns the tables and tries to 
use information theory as a starting-point for statistical mechanics or 

2*  
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measurements.2-11) In such attempts Jaynes9) has introduced a further 
recipe of an a priori distribution, based on absolute entropy and with 
connection to Bayesian concepts14-10-5). Rowlinson16) mentions some 
shortcomings of this a priori distribution, exemplified by the die of Jaynes.

Quite apart from the above lack of uniqueness of entropy as absolute 
measure of information, there are other deficiencies in this measure. For it is 
not clear beforehand why entropy should be singled out to the exclusion of 
the other degradation functions, which all have the same general properties 
(additivity for independent fields, and composition rules). On the contrary, 
we found previously that statements of the field from measurements contain 
not only relative entropy but other relative degradation functions as well.

The ©-function

The degradation functions are quite general functions of a field, based 
only on separability for independent fields. They are not necessarily 
connected with time dependence of a field or with any equation of motion (cf. 
e.g. the /^function in mathematical statistics). For some purposes it is a dis­
advantage that they are relative functions, measuring one field with respect 
to another one. This circumstance is sometimes obscured when a well- 
defined equilibrium field exists.

It may thus be well-advised to look for functions which are absolute 
measures of fields, even though their applicability be less general. I shall 
consider an interesting function of this kind, to be called the 0-function.

Let there be a field cz(.r,Q, following an equation of motion of type of 
(3.10), for instance. Suppose that the equation of motion is time-independent, 
i.e. G in (3.10) does not depend on t. This is clearly a basic situation for 
systems in physics. Consider a degradation function of n’th order, measuring 
a(x,t) with respect to the field taken a time r later, a(x,t + r). In the limit of 
small values of r one obtains by expansion

= 1 + +1 T2 0 (u (,r, 0) 4- . . . . (3.14)

where 0 is given by

(3.15)

When (3.10) is introduced in (3.15), 0 is seen to be explicitly a function of 
one field only, in contrast to the degradation functions. It follows directly 
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from (3.15) that 0 is additive for independent fields; when a = 
a1(jc,t')a2(y,t) then 0(a) = 0(«i) + 0(a2). This property is inherited from 
the degradation functions through (3.14).

Clearly, 0 is larger than or equal to zero, the equality sign holding only 
in equilibrium. Moreover, the degradation functions were shown to 
change monotonically with time towards 1. It therefore follows from (3.14) 
and (3.13) that 0 as a function of time decreases towards zero, if G in (3.10) 
is independent of t,

(3.16)

An obvious application of 0 is therefore, inserting the equation of motion 
in (3.15), to find the equilibrium field by variational methods, Ô0 = 0. It 
is not the aim here, however, to study such problems but only to point out 
lhe noteworthy properties of the 0-function.

§ 4. Dependent Fields

In the previous case of independent fields there was for instance a 
constant source of the field, and one could make an unlimited number of 
measurements, thereby improving the knowledge of the field.

The case of a dependent field is in some respects quite different. It 
affords further insight in physical problems and has connection to measure­
ments as well as to basic theoretical concepts. Measurements of a dependent 
field may influence strongly the value of the field. Thus, one may make an 
observation on a Brownian particle, e.g., by ascertaining its position, and 
thereby obtain new statements as to its behaviour in time and as to the 
results of other measurements. When a measurement is made, it can be of 
interest to follow the system both forwards and backwards in time. Measure­
ments of dependent fields may alternatively be considered as preparation of 
a specific configuration of the system, being thus part of an experimental 
setup.

It is convenient to make a separation between complete and incomplete 
measurements of a dependent field. In a complete measurement all coordi­
nates of the system are recorded exactly. Incomplete measurements may 
observe all coordinates in an approximate manner, or may record exactly a 
few of the coordinates only.

I employ the following terminology. The field in the absence of measure­
ments is called the original field. The field as modified by measurements is 
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the dependent field, labelled by a star. The dependent field after the 
measurement is called the subsequent field, whereas the dependent field 
before the measurement is described as the prior field.I f one wishes to 
visualize these concepts in a simple way, he may suppose that the systems 
measured have labels so that they can be recognized at all limes.

In the following I consider the general case of continuum variables, 
with discrete variables as an obvious specialization. Suppose that the 
normalized field, at time t = 0, is a(.r,0). It obeys the equations of motion 
(1.1), (1.2), or (3.10), so that for t > 0

a(x,/) = fdx'T(x,rc/,0)fl(x/,0). (4-1)

Complete measurement

Suppose that a measurement is made at time with the unique result 
that the particle is at position xx (for instance a certain point in phase space). 
This complete measurement implies of course an unwarranted accuracy, 
but that is of no consequence in the present derivation. In fact, one might 
instead consider a probability statement with a certain width around xx. 
Note also that in the corresponding discrete case it is completely justified to 
suppose that the system is observed at a definite position k.

The distribution of the system as determined by the measurement we 
call a*(x,  /) so that

a*(æ,  Zx) = <5(æ —xx). (4.2)

The probability of obtaining the measurement (4.2) is represented by the 
value of the original field, a(xx, Zx) from (4.1).

It is easy to find the field subsequent to the measurement, since by the 
equations of motion (4.1) acting on (4.2) one gets

= T(x2,t2; x^tj, t2 > /x.

Eq. (4.3) is the probability of obtaining x2 at time t2 if one has x’x at fx. If 
we multiply (4.3) by the probability a(xx, £x) of xx at /x, we obtain the 
combined probability of the two events

P(x2, t2,x1,ti') = T(.r2,f2; xx, fx)a(xx,/x), i2 > Zx. (4.4) 

The result (4.4) may be extended to any number of subsequent measure­
ments by multiplication with the appropriate propagators T(xi + 1, ti+1; 
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Xi, ti). Therefore, one is concerned with a Markov chain7), as is characteristic 
of complete measurements of a dependent field. But the more common case 
of incomplete measurements of a dependent field (cf. below) does not have 
this Markov property in full.

We next ask for the field backwards in time, as modified by the measure­
ment at tlt and call it the prior field. It is already determined by the previous 
considerations. The total probability of the two events at times and t2 is 
given by (4.4) and we can obtain t2 < by exchanging indices 1 and 2 in 
this formula, i.e. T(xlf t1; x2, t2)a(x2, t2). The undisturbed probability of 
Xi at /x with the original field is a(xlf t±). By dividing into the product we 
obtain the probability of x2 at t2 if xr at tlf i.e. the prior field

a*(x 2,f2) = -7-----— x2J2)a(o?2,f2), t2 < tr. (4.5)
a(æi, /x)

Note that a*(x 2, t2) is normalized to unity. The formula (4.5) is also familiar 
for Markov chains (cf. Doob7)). Observe also that, unless a is the equilibrium 
field, it may cease to exist when t2 — co, so that t2 in (4.5) attains a lower 
limit too.

Time reversibility in equilibrium

Let us suppose, first, that the equations of motion are time-independent, 
so that T(x2, t2; xlt tx) = T(x2, xlt t2 - tx). Second, let the original field be 
the equilibrium field, a(x, t) = a°(x), and thus independent of time. In 
fact, this is usually the most convenient way of preparing a system in a 
well-defined state; if it is left undisturbed for some time the equilibrium is 
attained with any desired degree of accuracy. When the original field is 
a°(x) the prior field (4.5) becomes

u*(x ’2J2) = ——-T(x1,x2,t1 - t^a^x^, t2 < tv (4.6) 
a°(æi)

When t2 -> - co, the prior field (4.6) approaches the equilibrium field 
a°(x2), because T(æx, x2, oo) = a°(æ1). Likewise, the subsequent field (4.3) 
tends to a°(.'r2) for t2 -+ + ».

The case considered here has particular interest because it allows a new 
approach to a familiar problem in the discussion of statistical mechanics 
near equilibrium. In that connection one often makes use of the conceptions 
of microscopic reversibility and macroscopic irreversibility. The Onsager 
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relations3«15) between thermodynamic parameters are then considered as a 
consequence of microscopic reversibility, the latter being due to time 
reversibility of the Hamiltonian equations of motion.

The present equations of motion of statistical dynamics are much simpler 
in having no need of distinction between a macroscopic and a microscopic 
region, the motion being always irreversible. We can, however, now consider 
the question of effective time reversibility in equilibrium for a dependent 
field, on the basis of (4.6) and (4.3). To this end, consider the dependent 
field at times t2 = /x ± r,

a*(x 2, t+ t) = T(.r2,æi,r),

1 
a:::(.T2)/i - t) = ——- T(x1,æ2,T)a°(x2).

ou(æ1)

We demand effective time reversibility in equilibrium, i.e. always

a*(x 2»G + T) = a*(æ 2, - r), (4.8)

and obtain from (4.7) the condition

T(x2,x1, r) • (7°(.r1) = T(x1,x2,T)a°(x2) for all r > 0. (4.9)

The condition (4.9) requires that — in equilibrium — the rate of transition 
from any space point to any other point during any finite lime t is equal to 
the opposite rate. This property was called spatial reversibility in SSD. It was 
shown there that (4.9) is completely equivalent to a demand of spatial 
reversibility of the elementary transition rates, cf. (3.10),

G(x2,xl)a<>(x1') = G’(.r1,.r2)rz°(.T2) (4.10)

for all xlt x2. It does not matter if G(xlt x2) = 0 for many x2 =t= xlf or for 
all x2 + xlf i.e. the limit where differential equations obtain from (3.10). 
The demand is merely that the system is indivisible, and thus has a unique 
equilibrium a°(x), and that (4.10) is fulfilled.

The demand of effective time reversibility in equilibrium leads to, e.g., 
the Onsager relations. But it is not necessarily connected with time reversi­
bility of the equations of motion. On the contrary, according to (4.10) it 
poses a simple condition on the equations of motion. This condition is 
easily fulfilled by differential equations of motion, like Brownian motion. 
The situation is illustrated by the two following examples.
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Example; Brownian motion
Consider Brownian motion of a particle in momentum space without external 

forces.4) In this case momentum space gives a complete account of the behaviour, 
if we abstain from asking about the motion in coordinate space. Assume therefore 
that the equation of motion is

ßP
M

(4.11)

where D and ß are constants. The equilibrium of (4.11) is given by the Maxwell 
distribution

ct°(p) = (/3/27rM)1/2exp(-ßp2/2M). (4.12)

According to SSD, p. 29, the equation (4.11) leads to spatial reversibility. In order 
to see this explicitly, find the propagator T(p,p0>T) belonging to (4.11). It is

1/2
r(p,Po,r) =

where the damping time is z-1 = M/(Dß).
It follows from (4.13) and (4.12) that 

1
a°(p)

r(p,p0,-r) (4.14)

i.e. spatial reversibility in momentum space.
Now, if the particle is measured to have momentum p0 at a certain time t, then 

(4.13) represents its distribution in p at a time t + t. But if the original distribution 
was the equilibrium (4.12), then it follows from (4.14), (4.6) and (4.3) that the 
distribution of the measured particle is also (4.13) at a time t — t. There is thus 
time reversibility in equilibrium because of the reversibility in momentum space for 
the time irreversible equation of motion (4.11). With this example we are getting 
close to statistical dynamics in phase space, where the Hamiltonian equations of 
motion play a part. In fact, with a view to this we can formulate another symmetry 
property of (4.11). Note that in (4.13)

T(-p,-P0,t) = T(p,p0,t). (4.15)

Therefore (4.14) becomes, because of (4.12),

—Z(p,p0,T) = —---- - T(-P0,-P,t). (4.16)
a°(P) a°(-Po)

This result is the one which remains valid in statistics in phase space.

Counterexample: Multiple scattering with damping

It is instructive to consider a case without spatial reversibility, for continuum 
variables. The purpose is not merely to show that mathematically simple counter- 
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examples may be found. It is, rather, to make clear that absence of reversibility in, 
e.g., momentum space is not only possible but even quite common in familiar 
problems from physics.

Small angle multiple scattering is equivalent to motion in transverse momentum 
space. The previous paper, SSD, contains several exact solutions of such integral 
equations. The simplest case of this kind corresponds, approximately, to classical 
scattering by 7?“2-potentials. Let us in this case introduce a damping of the transverse 
motion, proportional to transverse momentum and due to slowing-down effects. 
This is not unlike what may happen in e.g., proper channelling13).

The desired equation of motion in momentum space is, if we simplify to the 
one-dimensional case,

(4.17)

where p is the small transverse momentum, and rj the change of transverse mo­
mentum by scattering. The equilibrium belonging to (4.17) is

C/Â
p2+ ^2(c7a)2' (4.18)

It is not difficult to find the propagator T(p,p0,r) belonging to (4.17),

T(p,p0,t)
(l-e-^n-(CM)

(p -p0e-^)2 + ^2(! -e-*r) 2(C/A)2’
(4.19)

which formula has several features in common with the corresponding one for 
Brownian motion, (4.13). But there is not spatial reversibility, since (4.18) and 
(4.19) do not fulfill (4.14). In fact, suppose that the system is in equilibrium, and that 
at t the momentum is measured to be p0. The subsequent field, (4.3), is then given 
by (4.19)

a*(p,Z  + r) = T(p,p0,r), (4.20)

but the prior field is, according to (4.6),

p| + «»(CM)« (l-r^)-(CM)
a*(p,t  — t) =--------------------- ---------------5. (4.21)

p2 + ti2(C/â)2 (p0 - pe~ + ti2(1 - e-^T)2(C/Â)2

The formulae (4.21) and 4.20) are quite dissimilar; note in particular that, for 
P —> oo, a*(p,/  - r)/a*(p,  t + t) -> 0. This result illustrates also how transient 
equilibrium distributions in physical systems may fail to give effective time reversi­
bility, when integro-differential equations of motion are involved.

Incomplete measurement

As a supplement to the previous complete measurement of a dependent 
field let us discuss briefly the consequences of incomplete measurements. As 
an example, a number of particles may perform Brownian motion, the 
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instantaneous state of each particle being given by a point in phase space. 
An incomplete measurement might be to record only one momentum 
component of a particle. This case being quite simple, I shall instead look 
into the alternative problem where a measurement is only approximate.

Let the original field be given by (4.1) as before. Consider an incomplete 
measurement in the sense that it gives only a probability statement about the 
coordinates of the system. For definiteness, suppose that one has a counter 
measuring at time /x, with its centre placed at xr. If a particle passes the 
point x at tlt the counter gives off a signal with probability f(x - xx). Only 
the relative probabilities of signals matter for the present, so assume that 
\dxf(x — xx) = 1. But it should be realized that successive measurements 
imply a decrease which can have serious consequences.

We ask for the value of the prior field a*(x 2, f2), t2 < tlf when an ob­
servation is made with the counter at time tlt given the original field a(x,t~). 
If a particle starts from x2 at t2 its probability of reaching x is T(x, tlf x2, t2~). 
Its probability of being recorded is therefore J dxf(x - x^)T(xtti ’,x2, t2). 
Moreover, the original probability of arriving at x2, t2 is a(x2, f2) and, if 
this is multiplied into the integral, one gets the total probability of recording a 
particle having passed through x2, t2. Now, this is also —apart from a 
constant of normalization—the probability that the particle was at x2, t2, 
when it is recorded at time fx; in fact, the latter result expresses merely the 
theorem of Bayes7>10’14). The prior field is therefore

a*(æ 2> M = C-1 Jdæf(æ - æx)T(x, fx; x2, f2)a(x2, f2), t2 < tlt (4.22) 

with

When the two times are equal, t2 = tlt (4.22) becomes, since T(æ,fx; x^tj^ 
ô(x - X2),

(4.24)

and this result is more easily obtained by a direct argument.
By means of the propagator (4.1) acting on (4.24) the subsequent field 

obtains,

a*(æ 2, f2) = dxT(x2,t2;x,t1)f(x - x^aÇxdi), t2 > fx. (4.25)

In a general sense, therefore, the results for incomplete measurements of 
dependent fields do not deviate from those for complete measurements,

3*  
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except in being more complicated. In particular, the results concerning 
effective time reversibility in equilibrium, as expressed in (4.9) and (4.10), 
remain valid for incomplete measurements, i.e. when (4.22) and (4.25) hold.

§ 5. Inversion of Probabilities

The direct probability for a discrete variable was illustrated in (2.1) and 
(2.3), where the probabilities of various events N were found when the 
independent field ä was given. The problem of inversion consists in finding 
what statement may be made about the field ä when some event N is ob­
served. This statement is, at most, a probability distribution of the field.

In the following I therefore suppose that no more than the direct pro­
bability is known for a complete set of events and for any field. I ask 
whether an inverse probability follows uniquely from it. We shall find that 
in some cases there is in fact a unique solution, while in other cases the 
solution has an uncertainty. This is quite similar to the results in usual 
inversion problems in mathematics.

It appears necessary to state the basic problems and their solution in 
some detail, because one may easily be led astray in these questions. In 
fact, the difficulties met with have led to various schools of thought in 
mathematical statistics, since the time when Bayes1) drew attention to the 
problem. In consequence, a number of concepts of different content are 
used in the literature. They range from the cautious use of ‘likelihood’, not 
conceived as a probability,8) to the introduction of‘a priori probabilities’,10-14) 
which are not part of the problem as stated above.

More specifically, the following discussion takes up two major problems. 
The first one is the question of inversion of probability between continuum 
variables, to be studied in some detail for one-way variables. The second 
problem concerns a discrete variable, e.g., a true discrete variable like the 
number of alpha-particles emitted by a radioactive specimen, or an artificial 
one created by dividing a continuum variable into a number of intervals for 
the purpose of measurement. With a discrete variable one docs not have a 
unique inversion of probability but a latitude appears as we shall see.

A third major problem concerns actual interpretation, in a given exper­
iment, of an inversion statement about the field. This problem can be the 
most intriguing one. Thus, if one asks for a statement concerning an unknown 
parameter Â, the latter need not be, say, a stochastic quantity since it can 
have a fixed unknown value. Of course, it can then be difficult to have a 
realizable frequency interpretation of the probability of Â; but that may 
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occur for direct probabilities too. The more subtle difficulties are connected 
with other properties of probability, like independence and composition 
rules.

To sum up : I shall consider merely the well-defined question of what 
inversion statement is permitted when just the direct probabilities are known. 
I do not attempt to introduce a systematic and comprehensive theory, 
selecting instead suitable examples, which also illustrate actual applications. 
Whereas the aim is discrete variables, I solve first the simple case of one-way 
continuum variables.

One-way distribution in continuum case, and its inversion

Inversion of probability is a generalization of inversion of a function.*  
Thus, consider two variables, f and x, and a curve x = f(f) in the t—x 
plane. The basic case for inversion of the function /(f) obtains when it 
increases monotonically with t, because then the inversion t = /-1(.r) is 
unique. We may suppose that 0 < f < œ, that /(0) = 0, and that there is 
no upper bound of f(t); this does not imply a limitation of the results. If 
/(f) were not monotonically increasing, one would have a more complicated 
problem of inversion. In particular, if /(f) were constant in an interval 
C < t < f2, there would be no unique inversion when x = As we shall 
see, the one-way variables in probability theory—or in statistical dynamics — 
are the analogue of monotonically increasing functions.

Consider the general case of a distribution of mass, with density 
o = o(x, t), where q is defined for 0 < f < co, 0 < x < co, and q > 0. If I 
regard the mass distribution as a probability distribution of x for a given f, 
I write Pt(x) = o(x, P). The distribution is assumed to have conservation, or

(5.1)

It follows from the conservation (5.1) that, at the point x al lime f, one 
may introduce a current j(x, f) as

or

j(x,t) = - —J (5.2)

* Because of this simple connection I use the term ‘inversion’ of probability. I should 
mention that, in mathematical statistics, the word ‘inversion’ is sometimes used in a different 
sense.8,10)
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(5-3)

I shall suppose that, for all t and x, the function j(x, /) in (5.2) is non­
negative,

j(x,t) > 0, when o(x,t) > 0. (5-4)

This means that the distribution o(x, f) always moves in the direction of the 
positive x-axis, where motion stands for change when t increases. Eq. (5.4) 
therefore implies that x is a one-way variable, and that the distribution 
behaves similarly as the monotonous function /’(/).

Make now the following three assumptions as to the density o(x, f) = 
Pt(x). First, suppose that q(x, 0) = <5(x), so that at time t = 0 the distribution 
starts at the origin. Second, assume that there is not a finite probability 
placed on the /-axis outside the origin, i.e. q(x, 0 can not contain a component 
of type of, say, <5(x) ‘e—t/T. Third, assume for convenience that o(x, f -><»)-> () 
at any fixed x, so that the distribution moves to infinitely large values of x 
when t -> co. The third demand, together with (5.2), implies that

(5.5)

It is thus plausible that j(x, t) is a probability density. Actually, when (5.4), 
(5.5) and the three assumptions are fulfilled, there exists a probability 
density of t for given x

,x
px(t) = (5-6)

I call P«(x) and PX(P) the direct and inverse densities connecting one-way 
variables x and t. The above curve x = /'(0 is a rather special example of 
this kind, since 7ø(x) = <5(x - f(ty) and Px(P) = f'(f)ô(x - f(t)) > 0.

Let me show, by a simple argument, that (5.6) is the inverse probability. 
Thus, approximate the density q(x, 0 by a set of N successive curves fi(T), 
all starting at the origin, increasing monotonically with t without intersection, 
and tending to infinity for t -> œ. Each of the curves is given a probability 
weight 1/iV, so that the total weight is 1. We may determine /)(0 by i/N =

Q(x,C)dx = whereby the previous assumptions secure that the
J o
curves have the desired properties. The total density belonging to the set of 

N
curves is PtN(x) = 2 <5(x - fi(ty)/N, but this can be inverted to P^(0 = 

i = i
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2A'(/)<5(x - fi(O')lN> where f'(t) > O since /(æ,/) is positive. In the limit of
i
N-> co, the inverse probability P%(/) becomes PX(P) in (5.6) which then is the 
inverse of Pt(æ). In order to have uniqueness we must in particular require 
that the derivative of the first curve, remains different from zero for 
any value of N; but that is a consequence of the second assumption above. 
If this assumption were not fulfilled, one would meet with problems like 
those belonging to discrete variables (cf. p. 35). Note, finally, that when 
Pz(t) in (5.6) is the inverse of Pt(x), then P^(.r) is also the inverse of Px(P).

One-way equation of motion

Consider now an example of equations of motion for one-way variables. 
Suppose that the distribution g(x, t), with initial condition o(x, 0) = <5(æ), 
obeys the integro-differential equation

o

where g(r]) is non-negative. Accordingly, q(x, /) remains non-negative, and 
it also has conservation, $dxg(x, t) = const. The equation (5.7) is somewhat 
specialized in being invariant towards displacements along both /-axis and 
.r-axis (cf. SSD, in particular § 6). Since only positive values of rj occur in 
(5.7), it is obvious that the distribution always moves in the positive ^-directi­
on and (5.4) is fulfilled.

There are some conditions on </(/;) in (5.7). In order to have convergent 
results, so that q does not move promptly to infinity, there are a few demands 

on g(rf). It is required that qE = g(ri)drj has a finite value but, when 

e -> 0, qe is allowed to diverge. This corresponds to a collision cross section 
which diverges for soft collisions, if we consider g(jf)dv] as being proportional 
to a differential collision cross section. The divergence can not be too strong, 

because rig(j])dq must have a finite value so as to avoid prompt motion 

to x = co. The basic solutions of (5.7) are the propagators, i.e. functions 
which initially are o(x, t = 0) = <5(.r), corresponding to the first assumption.

They have the property q(x,t1 + t2) = q(x — x', t q (x , t ^)dx . In order 

that the second assumption on p. 30 be fulfilled, so that no part of the 
distribution remains on the /-axis, there is a requirement of g(q). We must 
demand
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(5.8)

so that the corresponding transition cross section diverges. This is obvions, 
since if q0 were finite, part of the distribution would remain on the /-axis, in 
fact exp(— qof)ô(x).

Explicit solution of inversion

We have thus found that the distribution (5.7) with the condition (5.8) 
can be inverted by eq. (5.6). Consider a specialized case of (5.7), where 
g(jf) obeys a power law,

g(rf) = Cnlr]l+n, 0 < n < 1. (5.9)

It is clear, for dimensional reasons, that (5.9) leads to distributions of the 
kind Pj(x) = q(x, f) = æ_19?n(xn/Cwf), which is a so-called stable distribution. 
In this case the inverse probability is immediately obtained from (5.6),

7^(0 = (5.10)

In this simple case Pz(0 is not far from being proportional to Pt(x). This is 
due to the simple assumptions in (5.7) and (5.9). But it is worth noting that 
the two probability distributions are not each others ‘likelihood’.

Consider a particular choice of n in (5.9). As we shall see, the case of 
n = 1/2 has particular interest. According to SSD one gets the propagator,
with C if 2 — C?

(5.11)

The inverse probability is found from (5.10),

(5.12)

Eq. (5.11) may represent the probability distribution of total energy loss 
x for an energetic ion which passes through a foil of thickness t, su Hering 
elastic collisions with atoms in the foil. The differential probability of an 
individual energy loss between g and g + dg is Cdtdg/g312, cf. (5.9), for 
passage through a distance dt. The distribution (5.11) of total energy loss x 
for given thickness t is a peak of moderate width. If one measures a given
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total energy loss and the thickness is unknown, he finds a wide probability 
distribution of thickness. It should be emphasized here that interpretation 
of inversion experiments based on (5.11), (5.12), (5.13), and (5.13') con­
tains many subtleties, unnecessary for the derivation in the following sec­
tions however.

The distribution (5.12) is quite familiar if the problem is turned around. 
Suppose one has a one-dimensional diffusion process with diffusion constant 
D = 1/(4%C2), t being the numerical value of the distance from the starting- 
point, while x is the time variable. Then the Gaussian (5.12) is the direct 
probability distribution of the distance t for a known value of the time x, 
or of Dx. The inverse probability is now (5.11), giving the distribution of 
the time x, or of Dx = gt2/2, if one measurement gives the distance t from 
the origin.

Returning to the definite example of one particle at depth t in a substance 
having suffered an energy loss x, it is quite obvious that knowledge of t gives a 
distribution (5.11) of energy loss x, and knowledge of x gives a distribution (5.12) 
of range t. But suppose in the former case that x has a fixed unknown value, and 
that v measurements are made, giving q, t2, . . tv. This may be imagined to happen, 
somewhat oversimplified, if the track of each particle remains visible until an energy 
x is lost, the threshold x being unknown. Now, the set of v measurements may be 
considered as a single measurement, and in the present case the formulae are simple 
if described in a r-dimensional Euclidean space. Introduce a length T by T2 = 

v
The direct probability of i is a function of v factors and may be expressed 

i = 1
by T, i.e. on differential form 2(?i1/2C/x1/2)r exp ( —7iC2T2/x)Tr~ 1dT/r(v/2). The 
usual inversion (5.6) leads to

P T (x) (5.13)

(5.13')
r

Second, if the thickness of the sub- 
. . xv are measured, a

which formula is the familiar ^-distribution.
stance has a fixed unknown value t, and energy losses xr,x2, .
differential product probability obtains, as a function of t and £, where 1 = 

v
^x^1. By inversion one gets from (5.6)

i = 1
/nC2\v'2 2iv~1

- ~F

quite similarly to (5.13).
These results, belonging to a well-known distribution, are meant to illustrate the 

straightforward content of direct and inverse probabilities, as well as the combination 
of several measurements. Though, in principle, similar calculations may be made 
for other stable distributions (5.9), they are more difficult in practice.
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Consider next another example with wide applicability but of particular 
interest in connection with discrete variables. Suppose that in (5.7)

(5.14)

corresponding to (5.9) in the disallowed case n = 0, but with an expo­
nential cut-off. The total cross section in (5.14) is infinite, i.e. (5.8) is ful­
filled. The formula (5.14) is closely analogous to the differential probability 
per unit time of emitting electromagnetic quanta of energy ha> -+ rj by an 
accelerated charged particle. The desired divergence of the total cross 
section of (5.14) then corresponds to the so-called infrared ‘catastrophe’. 
Replace in (5.7) the variable x by r and Ct by /<. The particular solution of 
(5.14), (5.7) which starts at the origin, i.e. the propagator, is then the gamma 
density

P/z(T) = (5.15)

with an inverse according to (5.6)

(5.16)

Discrete variable

As mentioned previously, the case of a discrete variable usually does not 
allow of a well-defined inversion of probability. There will be a latitude, 
but the inversion can often be bracketed rather narrowly between two 
probability distributions.

As a preliminary, consider the Poisson process. For definiteness, suppose 
that one has a radioactive specimen for which Â is the probability of emission 
of an a-particle per unit time. Therefore, A is a measure of the number of 
radioactive atoms in lhe specimen, being proportional to this number. 
Introduce r = At as a dimensionless time variable.

There are two situations with well-defined probability distributions. 
First, suppose that one records the time instances at which each a-particle 
is emitted. The starting-point of time is chosen to coincide with the emission 
labelled zero. A familiar analysis of the probability distribution of emission 
times, for instance by means of an equation analogous to (5.7), gives
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P'M = <3(t),

PeM = /
(m - 1)!

(5.17)

i.e. the gamma distribution. The index e in P indicates that one is concerned 
with the instant of emission. The distribution (5.17) has the same compo­
sition rules as (5.15) but is confined to integers.

If one measures the time t of the n’th emission, eq. (5.17) can give the 
probability distribution of A = r/t. Consider an example of this kind. 
Suppose that one has two specimens of a-emitters, 1 and 2, and wants to 
determine the unknown fractional mass A1/(A1 + A2) = a1. Two time 
measurements are made corresponding to emission numbers nx and n2, 
giving times C and t2. The separate and independent probability distributions 
of and A2 are then found from (5.17), whereby the desired probability 
distribution of ax is obtained. Note that the two times and t2 cannot be 
expected to be equal in magnitude. If they are, the quantity Oj acquires the 
beta distribution, as it should be.

Second, the Poisson distribution results if the counter is open during a 
given time interval t, with a known value of A, so that the dimensionless time 
variable, r = Al, is known. One then asks about the probability of n particles 
having been emitted during this time. The derivation is well-known and 
leads to

1
PT(m) = —Tme~r, m = 0, 1, 2,.............. (5.18)

ml

This type of measurement is the most common one, for instance with a 
number of specimens counted during the same time interval. It thus comprises 
both (2.2) and (2.1), i.e. the cases envisaged in § 2. For definiteness, let now 
the zero-point of the time interval r = AZ in (5.18) coincide with the emission 
of a particle, i.e. the particle with label 0.

The noteworthy property of (5.18) is that there is not unique inversion. 
The reason is simply that one variable is discrete, and the lack of uniqueness 
has, in a sense, no connection with the fact that we are concerned with 
probabilities. Thus, the number m in formula (5.18) means that one is 
somewhere in the interval (m, m + 1). In fact, we have to do with one-way 
distributions, and thus with distributions in the interval m < fi < m + \ 
in (5.15). We can therefore introduce inversion of (5.18). The corresponding 
quantity will be called PMl(r), where ~ indicates that the function is not 
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uniquely defined but contains a latitude. In all estimates we get an interval of 
distributions

PM PM < PemM)> (5.19)

where the inequalities arc symbolic, meaning only that there is a latitude in 
the index. Thus, it holds in a straightforward sense that averages over Pm(r) 
of increasing functions like rs obey inequalities,

< f 7\(T)TSdT < fœ^ + 1(T)TSdT, (5.19') 
o Jo Jo

because of the one-way properly of the variables. It may also easily be 
shown that Pwl(r) has a simple composition rule.

Determination of a from Admeasurement

Clearly, the above method allows a determination of tx and r2 if mi an(l 
m2 are observed. This gives in fact the inversion statement belonging to 
formula (2.1). I shall derive this inversion in a more direct way.

Consider a unit interval, 0 < a < 1, divided into n parts of length 
«1» a2, • • • , un, = 1. The magnitude of the a’s is unknown. In an Ad­
measurement there will be AT points on the unit interval, each one with equal 
probability everywhere, and each one independently of the others. The 
probability of recording A\, Ad2, . . . ,Nn points in the intervals is evidently 
given by (2.1). Now, disregard for a while the division in intervals and 
consider only the distribution of the N points in the unit interval. Let the 
points be labelled from 1 to A’ corresponding to increasing values of a. If we 
ask for the distance between point s and point s + m, we find that it has a 
probability distribution in length Pm(a) da, where a represents a5 + 7n - a$, and 

Pm (a) da
Nl

(N — in)! (in - 1 )!
(5.20)

the so-called beta distribution. Consider next the unknown length m on 
which Nf points are placed. The interval ai must be greater than the distance 
between the first and last points within it, i.e. in = Ni - 1 in (5.20) but 
smaller than the distance between the points just outside it, or m = Ni + 1 
in (5.20). The uncertainty may be narrowed by switching the intervals. 
Thus, interchange at and 1 — ai, as well as Ni and N — Ni, so that (5.20) 
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applies with m in the interval (Ni, Ni + 2). Together, the two results imply 
that the original interpretation of formula (5.20) requires

Ni < in < Ni + 1. (5.21)

One can in analogy to (5.20) perform a complete discussion with the 
n - 1 variables. But in fact this is not necessary, because the distribution of, 
say, Oj + a2 must be the same, whether we consider it as one interval with 
count A\ + N2 or as two intervals ar and a2, afterwards integrating over one 
of the variables for a fixed sum. In all, we therefore obtain from (5.20) and 
(5.21), not a uniquely defined probability, but a distribution Pÿ(a) bounded 
by probability distributions, which may be formulated as follows

where 2^=1 and 0 < & < 1. This formula*  is applied in §2, p. 10IT. 
i

* Note that the formula belongs to a total interval for which the end-points are uniquely 
n

defined; in other cases the sum 27£$ may be less than unity.
f=l

The above-mentioned additivity of the ai is seen to be fulfilled by (5.22). 
This is the same additivity as is contained in the direct probability (2.1). The 
present description therefore does not have awkward consequences of the 
kind resulting from Laplace’s rule of succession.10)

The above discussion of inversion is limited to one group of problems. 
By and large it seems not to be in disagreement with the ideas of R. A. 
Fisher8), as expressed in particular by the concepts of likelihood and fiducial 
probability. The proper inversion problems cover both of these concepts at 
the same time. On the basis of well-defined one-way distributions I have 
attempted to obtain quantitative statements of inversion, whereas a likelihood 
concept can lead to only qualitative statements, in the neighbourhood of the 
present ones though.

The theorem of Bayes applies when one is concerned definitely with 
conditional probabilities, as for dependent fields in § 4. To extend this 
theorem to all cases of inversion, by claiming a priori probabilities, would 
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seem to confuse the issue, in principle and in practice. Thus, in practice and 
for continuum one-way variables it would substitute a simple unique result 
by indefmiteness. For discrete variables, the a priori probabilities would 
replace the moderate uncertainty, ivl(Tlai), in (2.7) and (5.22). The result 

i
would be to blow up the uncertainty if not to distort the issue completely. 
In other cases, an a priori probability may mask a lack of existence of 
probability.

Concluding remarks

In most of the topics and in each chapter of this paper there is an im­
plicit, if not explicit, connection to Brownian motion. Vibeke Nielsen and I 
have studied Brownian motion of Hamiltonian systems, partly as a further 
elucidation of the above considerations, and partly on its own merits. We 
intend to publish the results in a separate paper. In connection with the 
present work I want to express my great indebtedness to Vibeke Nielsen for 
numerous discussions and penetrating criticism.

I am also particularly grateful to J. U. Andersen, E. Eilertsen, J. 
Kalckar, P. Kristensen, Pil Lervig, and K. Olesen, for valuable in­
formation and guidance, as well as helpful misgivings during my lectures on 
the subject.

I am especially indebted to Susann Toldi for competent and careful 
preparation of this paper.

Institute of Physics, 
University of Aarhus.
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I. 1. Introduction

La cosmologie relativiste est actuellement en vogue parmi les chercheurs 
travaillant sur la théorie de la gravitation d’Einstein ainsi que parmi les 
astronomes, qui y voient une interprétation remarquable des grandes décou­
vertes qui signifient non seulement une énorme expansion de la connaissance, 
mais aussi une expansion littérale de la multitude des galaxies, dont la vitesse 
est à peu près proportionnelle à leur distance.

Il faut se demander cependant si cette interprétation, qui ressemble 
plutôt à la physique prégaliléenne qu’à celle de nos jours, est vraiment motivée 
par les faits. En essayant de répondre à cette question, il est bon de commencer 
par la première cosmologie relativiste, celle développée par Einstein lui- 
même avant ces découvertes, et dont descendent les cosmologies présentes. 
En étudiant le chef-d’œuvre d’Einstein, où il a fondé la théorie générale de la 
relativité, on y trouve une vacillation entre deux points de vue, qui selon lui 
se soutiennent, mais qui en vérité sont contradictoires. Le premier de ceux-ci 
- la source principale de sa cosmologie - est la réponse à sa question: pour­
quoi la relativité du mouvement se limite-t-elle à des vitesses constantes en 
grandeur et direction? Cette question paraît bien naturelle, le mouvement 
étant par définition relatif. Donc, l’idée de Mach que les forces inertiales - 
qu’on connaît des véhicules accélérés - sont en fait une sorte de gravitation 
provenant de la multitude des masses dans l’univers, leur centre de gravité 
définissant le système de référence considéré par Newton comme Vespace 
absolu, paraît bien promettante à Einstein, quoiqu’il fallût l’adapter à la 
théorie de la relativité du mouvement uniforme. Tandis que ce point de vue a 
son origine dans des considérations philosophiques, selon lesquelles la nature 
doit se comporter selon nos habitudes de raisonner, l’autre point de vue 
Einstein l’a pris directement d’un fait expérimental, à savoir cette remar­
quable proportionnalité entre la niasse inertiale et la masse pesante, jusque- 
là sans interprétation, qui s’exhibe dans l’égalité des temps de chute de tout 
corps tombant d’une tour haute quand la résistance de l’air peut être négligée.

1*
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2. Le principe d’équivalence, la vraie base de la théorie générale d’Einstein

Commençons par le dernier point de vue par lequel Einstein a créé 
le formalisme mathématique de sa théorie, définissant par lui les concepts 
qui remplacent le potentiel et le champ de la théorie ordinaire de la gravitation - 
ainsi que son interprétation physique. Comme une introduction Einstein a 
considéré certaines expériences imaginaires très simples et éclairantes — tout 
à fait dans la tradition des successeurs d’Archimède, qui ont établi la 
nouvelle physique, dont le plus connu est Galilée. Donc, à l’intérieur d’une 
chambre, qui tombe dans un champ gravitationnel, constant en grandeur et en 
direction pendant l’observation, la pesanteur est pratiquement éliminée — 
fait bien connu des navigateurs des satellites artificiels — parce que les objets 
y contenus subissent la même accélération. Inversement, si la chambre est 
accélérée dans une région sans gravitation, les passagers qui y sont, peuvent se 
croire dans un champ gravitationnel, dont la force correspond précisément à 
l’accélération, car un objet qu’on y lâche, est atteint par le plancher juste 
comme s’il tombait dans une chambre en repos.

Par un véritable trait de génie Einstein a aperçu dans ces faits, essen­
tiellement connus depuis longtemps, un principe profond de la nature, plus 
tard appelé le principe d'équivalence, le mot équivalence se rapportant à 
l’identité essentielle des forces inertiales — produites par un mouvement non- 
uniforme relatif à un système de référence sans gravitation, appelé système 
inertial — et des forces gravitationnelles, produites par des masses. Et immédia­
tement il en a tiré des conclusions nouvelles concernant les effets de la gravi­
tation sur la lumière: déviation d’un rayon lumineux en passant devant un 
corps comme le soleil, et changement de la fréquence selon le potentiel 
gravitationnel, ces deux effets étant vérifiés depuis.

Pour développer ces considérations en une théorie de la gravitation, qui 
comprend la théorie de Newton — comme la théorie électromagnétique de 
Maxwell comprend l’électrostatique fondée sur la loi de Coulomb — il fallait 
généraliser et préciser les conclusions de ces expériences imaginaires, chose 
plus difficile qu’on ne l’estime aujourd’hui, à cause de l’admirable simplicité 
du premier résultat obtenu par Einstein: à savoir que la connaissance des 
lois qui gouvernent un phénomène dans le cas où il n’y a aucune gravitation — 
lois qui satisfont au principe de la relativité du mouvement uniforme — suffisent 
pour déterminer l’effet d’un champ arbitraire de gravitation sur ce phéno­
mène. Le premier exemple du nouveau point de vue, sans appliquer la 
théorie de la relativité, est que la loi de Galilée du mouvement d’un projectile 
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est une conséquence directe de la loi d’inertie valable dans un système de 
référence inertial.

Pour avancer plus loin il fallait d’abord généraliser les expériences par 
la remarque qu’un champ gravitationnel — sans singularité — dans une région 
autour d’un point en espace et en temps est de plus en plus constant quand on 
diminue cette région; la situation étant pareille à celle d’un petil lac, dont la 
courbure est négligeable. Cette situation est pratiquement réalisée par un 
satellite circulant autour de la terre - donc son manque de pesanteur.

La comparaison avec le lac n’est pas arbitraire. En effet, le formalisme 
mathématique de la théorie générale d’Einstein, y compris son interprétation 
de la physique, constitue une analogie très proche de la géométrie interne des 
surfaces courbes développée par Gauss et généralisée pour des espaces d’un 
nombre arbitraire de dimensions par Riemann. Comme cette géométrie est 
fondée sur la validité de la géométrie euclidienne dans les régions infinitési­
males, la théorie d’Einstein est fondée sur la validité du principe de la relativité 
du mouvement uniforme dans les systèmes locaux, dit inertiaux, où la gravita­
tion est éliminée.

Donc, dans la géométrie des surfaces courbes le concept de longueur est 
basé sur l’application du théorème de Pythagore pour exprimer l’intervalle 
ds entre deux points voisins en coordonnées usant d’abord les coordonnées 
cartésiennes d’une région infinitésimale, c’est-à-dire

ds2 = dx2 + dy2 (1)

Similairement l’intervalle entre deux événements proches, en distance et 
en temps, s’exprime dans un système inertial par la formule de Minkowski

ds2 = dx2 + dy2 + dz2 — c2 dt2 (2)

où c est la vitesse de la lumière et t le temps, expression qui est invariante 
non seulement sous des déplacements et rotations du système des coordon­
nées cartésiennes, mais aussi sous des transformations de Lorentz, où la 
vitesse du système est changée.

Ce sont des formules pour des régions infinitésimales quand il y a de la 
courbure. Pour décrire une région finie il y faut introduire des coordonnées 
générales, deux pour une surface (comme les latitudes et les longitudes) et 
quatre pour l’espace et le temps, dans les champs de gravitation. Les différen­
tielles dans les formules (l)et(2) sont alors des fonctions linéaires des différen­
tielles des coordonnées générales, dont les coefficients sont des fonctions de ces 
coordonnées. Donc, on a
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(Is2 = ^gncd.v* dxk (3)

où les x’ sont deux dans le cas des surfaces courbes et quatre dans la physique. 
Un concept de toute première importance dans les deux cas est celui de lignes 
géodésiques — les lignes de droiture optimale, qui sont aussi les plus courtes 
entre deux points d’une région univoque. Une partie infinitésimale d’une 
telle ligne étant droite, il est aisé de voir comment on peut les construire, quand 
les gu sont connus — simplement en utilisant les coordonnées cartésiennes 
locales pas à pas, chaque pas infinitésimal ayant la meme direction que le 
pas précédent. Leur importance dans la théorie des surfaces est évidente, 
définissant la roule la plus courte entre deux points. Et dans la théorie de 
la gravitation le mouvement d’une particule — pratiquement aussi des corps 
macroscopiques, comme les planètes - suit une ligne géodésique en quatre 
dimensions.

Ici nous rencontrons une différence essentielle entre les deux cas — non 
pas dans les mathématiques formelles, ni dans le fait que l’interprétation va 
par les systèmes locaux, où la métrique, définie par les gu, est constante —mais 
dans la signification des transformations des coordonnées. Donc, dans la 
géométrie interne des surfaces on s’intéresse en premier lieu aux grandeurs 
invariantes — une ligne droite étant une ligne droite simplement, aussi quand 
on écrit son équation en coordonnées curvilignes. Ce qui compte, c’est de quelle 
sorte de géométrie —euclidienne ou un des différents genres de géométries non- 
euclidiennes — il s’agit.

Pour les transformations qui touchent seulement l’espace cl non le 
temps, la situation est similaire dans la théorie d’Einstein, selon laquelle la 
géométrie est ordinairement celle de Riemann en trois dimensions. C’est 
dans les transformations touchant le temps que la différence se montre — en 
fait, comme nous avons déjà vu, dans les considérations originelles d’Einstein 
- car l’apparition, ou le changement, de la gravitation sont sans doute de pre­
mière importance dans cette théorie.

Considérons ce cas un peu en détail — la relation d’un champ constant de 
gravitation et le système inertial correspondant, traité rigoureusement par 
C. Moller. Ici l’élément de ligne ds prend la forme 

ds2 = d£2 + drf + dt2 — c2 1 (4)

où £ est la cordonnée correspondant à la hauteur dans le champ de la terre, g 
étant l’accélération produite par le (‘hamp. La transformation qui mène du
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système inertial (avec les cordonnées x, y, z, et le temps /) an système en 
repos dans le champ (avec les coordonnées £, g, C et celle pour le temps 7?) 
peut s’écrire

Pour un projectile, lancé verticalement dans le système inertial, on a 
l’équation

Z = Zo + vt (6)

et en la traduisant par les relations (5) on obtient directement l’équation pour 
son mouvement dans le champ gravitationnel, qui en même temps est celle 
d’une ligne géodésique de l’élément de ligne de la métrique (4). Pour le cas 
non-relativiste quand 7# « c et g£ « c2 on a

C = z0 + ^ - z2gd2 (1)

c’est-à-dire la loi de Galilée.
En résumant ces considérations, on peut dire que la similarité entre la 

théorie d’Einstein et la géométrie de Riemann correspond à celle de l’inva­
riant de Minkowski et l’élément de ligne - selon le théorème de Pythagore de 
la géométrie, tandis que leur différence correspond à celle entre le temps et 
une cordonnée spatiale comme elle paraît déjà dans le signe négatif du carré 
dt2. Donc, il ne faut pas oublier la différence entre la géométrie, au sens 
ordinaire, et la physique relativiste, ce qui est bien exprimé par le physicien 
hollandais Fokker par le mot chronogéométrie.

3. Le paradoxe de l’horloge et le principe d’équivalence

Comme un autre exemple du fonctionnement du principe d’équivalence, 
nous choisissons le paradoxe dit de l’horloge; on désigne par là la conclusion 
tirée par Einstein qu’une personne qui voyage aller-retour avec une vitesse 
comparable à celle de la lumière se trouve moins vieillie à son retour sur terre 
que ceux qui y sont restés, le rapport entre leurs âges étant alors égal à 
/ v2\1/2
1----- : 1, où p est la vitesse moyenne du voyageur et c celle de la lumière.

\ c7
Quoique ce rapport ait été vérifié par des expériences très précises sur la vie 
moyenne de particules instables, il y a encore des physiciens qui n’y croient 
pas, et en outre, d’autres qui débattent s’il s’agit là d’un effet de la relativité 
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speciale ou de la théorie générale d’Einstein. Connue nous allons voir, cette 
dernière dispute est aisément résolue par le principe d’équivalence en réali­
sant que tous ont raison, parce que la mesure du temps est définie par des 
systèmes inertiaux locaux, où la théorie spéciale est valable, mais qu’un 
voyage aller-retour ne peut pas rester dans un seul système inertial. 
D’ailleurs, ceci correspond précisément à la solution du paradoxe par 
Einstein lui-même. Mais pour rendre les choses plus intuitives, il vaut la 
peine de considérer un peu en détail un tel voyage, oii les conditions sont 
telles qu’il est impossible de fonder des doutes sur le manque de réalisme de 
l’entreprise.

Imaginons donc qu’un nombre de techniciens, physiciens et astronomes 
font un voyage aller-retour pour étudier en particulier d’autres systèmes 
planétaires que le nôtre en s’éloignant d’une vingtaine d’années-lumière de la 
terre. Leur grand vaisseau doit être fourni de toutes sortes de commodités pour 
le travail et le bien-être des participants, et, surtout, il faut que l’accélération 
du vaisseau, dirigée vers le toit, corresponde à peu près à la gravité ici sur 
terre — ce qui veut dire que les provisions d’aliments etc. doivent être suffi­
santes pour une douzaine d’années. Celte dernière supposition est la seule 
qui empêchera la réalisation du voyage, mais pour une raison assez triviale- 
le manque de carburant, dont il faudrait une quantité impossible, à savoir au 
moins quelques centaines de milliers de fois le poids du vaisseau même.

r II convient de diviser le voyage en quatre parties - égales au point de vue 
du vaisseau: accélération 9 jusqu’à la vitesse optimale, retardation (9 ren­
versé) jusqu’à la vitesse zéro, accélération 9 vers la terre, retardation pour 
atterrir (9 renversé). Les deux moments sans gravité, où la direction de 
l’accélération est renversée et où le plancher et le plafond échangent leurs 
rôles, ne vont pas gêner les passagers.

Par un calcul simple — remplaçant l’accélération continue par des 
changements 9ZI subits à des intervalles A — on obtient, par des transfor­
mations de Lorentz répétées, en allant à la limite, pour le temps t du système 
en repos et le temps & du vaisseau, la relation

c q'd
l = — sin h —. (8)

.7 c

C’est, comme on voit, la formule (5) avec C = 0, l’origine du système accéléré 
étant placée dans le vaisseau. Pour les passagers la durée du voyage est 
donc quatre fois le temps 7? pour une des quatre parties, et pour les obser­
vateurs à terre quatre fois le temps / correspondant. Pour la distance opti­
male, selon la terre, on obtient similairement
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Dans notre exemple nous allons prendre pour unités: l’an pour le temps et 
l’année lumière pour la distance, mettant g = 1, ce cpd correspond à peu près 
à la gravitation ici sur terre, à savoir 950 cm/sec2. Pour la durée du voyage 
nous obtenons donc 12 ans selon les horloges du vaisseau, mais pour les 
terriens à peu près 40 ans, la distance optimale étant de 18 années-lumière. 
Donc un des participants ayant 28 ans au départ, qui a laissé un nouveau-né 
à la maison, retrouvera à son retour un tils de son propre âge !

Ce calcul, où le temps ù est défini par la limite de la somme des éléments 
temporels A des systèmes inertiaux locaux par lesquels le vaisseau passe, 
donne le vrai temps, les horloges emportées étant faites pour le montrer; cela 
devrait suffire pour effacer tous doutes sur la réalité du paradoxe des horloges.

4. Les arguments d’Einstein pour sa cosmologie

Comme nous allons voir, ces arguments — le plus important d’eux étant 
basé sur l’hypothèse de Mach sur l’origine de l’inertie - sont étrangement 
contraires à son propre principe d’équivalence. Donc, Einstein a conclu que 
dans un univers vide il n’y aurait pas d’inertie; et il a essayé de montrer par 
sa théorie de la gravitation que la masse d’un corps est augmentée par la pré­
sence d’autres corps. Mais selon le principe d’équivalence la masse d’un corps 
est définie à l’aide d’un système inertial asymptotique exigeant des environs 
aussi vides que possible. Par exemple, la masse du système solaire est définie 
par un système de référence dans lequel le centre de gravité du soleil et ses 
planètes est en repos, c’est-à-dire qu’il tombe librement dans le champ gravi­
tationnel des autres étoiles, lequel, d’ailleurs, est très faible, mais surtout 
extrêmement homogène dans l’étendue du système solaire. En fait, c’est 
ainsi qu’Einstein lui-même a défini l’énergie totale d’un système quelconque 
- et comme montré par lui, l’énergie totale d’un système est proportionnelle à 
la masse totale. L’expression mathématique due à la présence d’autres corps, 
représente en vérité un champ gravitationnel assez étrange, qu’on peut écarter 
par une transformation locale des coordonnées - donc en accord avec le 
principe d’équivalence.

Le système de coordonnées dans lequel le centre de gravité du système 
solaire est en repos, est, comme on voit, justement celui appelé par Newton 
l'espace absolu, étant très approximativement celui de Copernic, où le 
soleil est en repos. Il est donc erroné de croire que selon la théorie d’Einstein 
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la différence entre ce système et celui de Ptolémée ne soit qu’une chose de 
nature pratique, plutôt conventionnelle qu’essentielle. Aussi le fait que ce 
système est presque en repos par rapport au ciel des étoiles fixes n’est 
aucunement un argument en faveur de l’hypothèse de Mach, comme il est 
parfois énonce. L’essentiel est qu’il est inertial.

Comme un autre argument pour sa cosmologie Einstein a considéré la 
circonstance que dans son univers clos on évite les conditions de limite à 
l’infini pour celte solution de ses équations qui remplace la loi de Newton, 
conditions qu’il a considérées comme contraires à l’essence de sa théorie 
générale, parce qu’elles ne sont pas indépendantes des coordonnées qu’on 
choisit. Mais, comme le montre l’exemple de la masse, selon le principe d’équi­
valence, de telles conditions sont nécessaires pour la définition des propriétés 
d’un système isolé. Et, en plus, le mot infini sous ce rapport est simple­
ment une expression d’un procédé mathématique, où il s’agit des distances 
longues en comparaison avec les dimensions de la source du champ.

Un troisième argument pour l’univers clos a rapport au paradoxe bien 
connu que la gravitation dans une région où la densité de la matière en 
moyenne est non zéro, croît vers l’infini avec ces dimensions. Mais, sans 
avoir recours à cette hypothèse, ce paradoxe est évité — comme l’a montré, il 
y a longtemps, l’astronome suédois Charlier — si la matière est distribuée en 
hiérarchie, et que la densité moyenne tende vers zéro par ordre d’hiérarchie. 
Et, ce qui est important, cette condition est satisfaite automatiquement par 
ces solutions des équations d’Einstein, qui correspondent à des systèmes 
matériels limités, qui sont le résultat d’une accumulation graduelle de 
matière — comme les étoiles et les galaxies. Leur limite est donnée par 
l’inégalité suivante entre la masse M et la densité /z du système

3 c6
M2/j, < -------- = 0.73 x 1083 73cm-3 (10)

32ttG3

où G est la constante de gravitation et c, comme plus haut, la vitesse de la 
lumière. Cette limite est loin d’être approchée pour les étoiles ordinaires et les 
galaxies, tandis que pour les étoiles de neutrons, récemment découvertes, elle 
est assez proche — et pour les solutions cosmologiques elle est dépassée.

A cette critique des arguments donnés par Einstein en faveur de sa 
cosmologie il faut encore remarquer que, quoiqu’il soit possible de mesurer — 
dans les régions qu’on peut surveiller — les propriétés du champ, qui corres­
pondent à la courbure des surfaces, il n’est pas possible — même dans le cas 
où ces propriétés sont celles de la cosmologie d’Einstein — de s’assurer que 
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l’univers soit clos. En fait, la situation est analogue à celle qu’on connaît des 
discussions, menées jadis, regardant la forme de la terre, déterminée en définitive 
par sa circumnavigation. Il est vrai qu’on avait là, déjà tôt, une raison assez 
convaincante pour sa sphéricité par les éclipses de la lune. Mais sans la 
troisième dimension de l’espace c’eût été impossible. Et pour la cosmologie 
on n’a pas de dimensions supplémentaires.

Cela veut dire qu’une conclusion à cet égard serait seulement possible 
au moyen d’une théorie sûre et profonde. Et une telle théorie, nous ne 
l’avons pas. Aussi la théorie quantique de champs — qui, bien qu’encore 
inachevée, est la meilleure de ce genre - demande plutôt que l’univers re­
présente l’état de moindre énergie, dont les parties où il y a une accumulation 
de matière, sont des fluctuations — donc, en moyenne, un vide infini.

IL La cosmologie nouvelle et son alternative
1. Un modèle de la métagalaxie

Par la découverte de Hubble d’une expansion régulière du système des 
galaxies la cosmologie statique d’Einstein fut abandonnée et remplacée par 
une autre classe de ses équations découverte par le mathématicien russe 
Friedmann — ce qui a donné lieu, non seulement à une interprétation pro­
mettante de la loi de Hubble, mais aussi à une théorie tentante de l’origine 
des éléments chimiques initiée par Gamow. A ce propos ses colla­
borateurs Alpher et Herman ont conclu que cette théorie demande l’existence 
au temps présent d’un rayonnement universel et isotrope correspondant à 
une température de quelques degrés au-dessus du zéro absolu, étant le reste 
d’un rayonnement d’intensité énorme à l’état d’univers au temps de la for­
mation des éléments. La découverte, il y a quelques ans, d’un rayonnement 
pareil, découverte inspirée par des physiciens - en premier lieu Wheeler et 
Dicke - qui n’avaient pas cessé de croire à ces idées, a contribué grandement 
à l’acceptation assez générale de cette cosmologie, nommée communément le 
«big bang» à cause du commencement violent de l’univers qu’elle suppose.

Tout de même il faut avouer que cette cosmologie, selon laquelle l’uni­
vers change avec le temps, est extrêmement éloignée - même plus que celle 
d’Einstein — de la physique ordinaire, dont le but esl de trouver des lois de la 
nature de plus en plus générales et non la structure de l’univers par des 
considérations plus ou moins philosophiques et esthétiques.

Donc, on se demande s’il n’y a pas une manière plus naturelle 
d’interpréter ces deux faits — l’expansion et le rayonnement isotrope - à savoir 
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de regarder la multitude de galaxies, qui participent à l’expansion, comme un 
système régulier — une métagalaxie — bien qu’énorme, qui est limité, comme 
sont les étoiles et les galaxies, étant formé par contraction gravitationnelle d’un 
vaste nuage, extrêmement raréfié, nuage consistant de particules stables, les 
plus simples, protons et électrons et leurs antiparticules. C’est remplacer la 
cosmologie relativiste par l’étude d’un système dont les problèmes sont à 
peine moins difficiles que ceux qu’on a rencontrés dans l’étude des étoiles et 
des galaxies.

Avant d’esquisser ce qu’on a fait et ce qu’on peut attendre d’une telle 
étude nous allons considérer un peu un modèle - sûrement trop simplifié —de 
l’état présent de la métagalaxie, décrivant la loi de Hubble aussi bien que la 
cosmologie «big bang».

Le modèle en question est une sphère en expansion, remplie de matière, 
dont la densité y est une fonction du temps, la même partout dans l’intérieur 
de la sphère et zéro dans l’espace extérieur. Dans l’intérieur le modèle 
satisfait à la solution de Friedmann usée pour le «big bang», qui à la surface 
est remplacée par celle de la théorie d’Einstein qui correspond à la loi de 
Newton. L’extrapolation en arrière, (pii dans le «big bang» mène à l'état de 
«tire hall» (l’origine du rayonnement isotrope), est ici défendue par l’inéga­
lité (10).

Voici quelques formules pour ceux qui s’intéressent aux détails des 
calculs suivants:

L’élément de ligne ds est donné par

ds2 = a2[ -- + rç2df22 ) - c2d#2 (11)
y 1 + er]2 )

où la longueur a, qui est responsable de l’expansion, est une fonction du 
temps '<), ?/ étant une coordonnée radielle et d_Q l’élément de ligne de la surface 
sphérique, où t] = 1. Pour les solutions, qui sont en expansion vers l’infini, e est 
égal à + 1, tandis que e = — 1 appartient aux solutions pour lesquelles l’expan­
sion est limitée. L’intermédiare de ces deux classes correspond à s = 0. Les 
solutions en question sont définies par les relations suivantes 

8 n
GuT2 =

3 ‘
flo

— , «o
«o + en

8 G/i a3
3~ c2 (12)

où 7’-1 est le paramètre de Hubble — la vitesse d’expansion pour des distances 
courtes étant donnée par la distance divisée par T — et la longueur (to est 
constante. Comme la densité //, T est une fonction du temps seul, tandis que 
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4 TZ „ 
M = ya

13

étant la masse totale du système, est constante. Comme on voit, l’expression 
Stt
- Gp/r2 détermine la valeur de e( + l,0, —1), selon qu’elle est moins 

que, égale à ou plus grande que l’unité. Dans la formule (13) est la valeur 
de T] à la surface, la distance d’un point du centre étant égale à 
a • lu ((1 + z/2)1/2 + ?/), où In signifie le logarithme naturel.

Comme le montre les équations (12), la connaissance au temps présent 
de la densité /z et du paramètre T permet de déterminer les valeurs de a0 et a, 
plus ou moins réelles selon le degré de validité du modèle. Tandis que 7’ 
paraît être assez bien connu - 4. 1017 sec.-ce qui correspond à une vitesse de 
25 kilomètres par seconde à une distance d’un million d’années-lumière, la 
densité fj, est encore incertaine, les masses estimées variant selon le juge­
ment concernant la quantité de masse dans l’espace entre les galaxies; la 
masse déduite en comptant seulement les galaxies dans un volume assez 
grand étant estimée à 3 • 10-31^ cm-3. Connaissant ce nombre, j’ai choisi, 
il y a quelques ans, un peu au hasard, la valeur 10~30(/cm~3, correspon­
dant à une expansion vers l’infini, la limite pour une telle expansion (e = 0) 
étant 10-29<7cm~3 avec la valeur mentionnée de T. Pour uq et a cela donne

ao = 1.23 x 1027cm, a = 12.6 x 1027 cm.

Pour compléter le modèle il faut encore avoir une valeur pour fy. 
Après la découverte des quasars, dont les déplacements-rouge sont les plus 
grands qu’on a observés, il fut naturel de penser que ces objets, qui paraissent 
représenter la jeunesse des galaxies, se trouvent près de la frontière de la 
métagalaxie, ce qui donnerait pour r]i une valeur d’environ un. Mais depuis 
quelque temps on a trouvé des indications que ces objets ne sont pas telle­
ment distants qu’on l’avait conclu par les déplacements-rouge. El il paraît 
possible - même probable - que ces déplacements ont une autre cause que 
l’expansion.

Si on laisse de côté les quasars, le déplacement-rouge le plus grand 
observé correspond à un effet Doppler d’une vitesse égale à 2/5 de celle de la 
lumière, donnant pour une valeur de près de 0.4 —si notre galaxie se trouve 
dans la proximité du centre de la métagalaxie, ce qui est probable. Car, 
autrement, on s’attendrait à quelques effets observables de la surface dans 
certaines directions. Pour le lecteur qui s’intéresse aux détails de ce calcul, 
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1/2

(14)

voici la formule donnant >/ quand on connaît le rapport À de la fréquence 
observée et de celle à la source:

Avec les valeurs données en haut pour <7o et a et celle pour le plus grand 
déplacement-rouge (2/5 de la vitesse de la lumière, ce qui donne Â = J/-2-) 
on obtient = 0.417.

2. Emploi des rapports d’Eddington

Une première indication que le rayonnement joue un rôle essentiel dans 
le développement de la métagalaxie fut obtenue par une tentative d’utiliser 
quelques rapports assez mystérieux découverts par Eddington, le grand 
astrophysicien, entre les dimensions de l’univers clos d’Einstein et les 
grandeurs atomiques, regardés par lui comme indiquant une relation pro­
fonde entre le macrocosme et le microcosme.

Il s’agit du grand nombre N du rapport entre l’attraction électrique et 
celle de gravitation d’un proton et d’un électron, ainsi

N = - —----- = 2.27 x 11)39
Gine lllp

(15)

011 e est la charge électrique élémentaire, G la constante de gravitation et nie 
et nip les niasses respectives de l’électron et du proton. Avec d étant ce qu’on 
appelle le rayon d’électron, ces rapports sont

e2
R~Nd,M~N2mp, d =------ = 2.82 x 10-13 cm

me c2

où R fut le rayon de courbure et 3/ la masse de l’univers d’Einstein. Au lieu 
du rayon de courbure - qui est constant dans l’univers statique d’Einstein - 
nous allons considérer la longueur oo, comparant la relation suivante

(17)

cas spécial de (12) pour a = a0, avec la relation entre le rayon de courbure 
et la densité dans l’univers clos, qui ne diffère de (17) que par le facteur 
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4% en place de 8/3 n. La valeur de Nd étant égale à 0.64 x 1027 cm, la 
valeur de n0 du modèle est très proche de 2Nd, et la masse, selon (13), est très 
proche de N2inprft. Comme la valeur de /z est bien incertaine, on n’en peut 
pas conclure plus qu’une concordance d’ordre de grandeur du modèle et 
des rapports d’Eddington, (pii paraît pourtant significative.

Leur application, cependant, dépend de l’hypothèse que le rayonne­
ment joue un rôle essentiel dans le développement de la métagalaxie, et que 
son action est grandement due à sa dispersion par les électrons selon la formule 
bien connue de J. J. Thomson, formule valable pour des fréquences dont 
les quanta sont petits par rapport à l’énergie mec2.

Une condition importante pour ce rôle est (pie l’opacité du nuage est 
suffisante pour la conversion de la contraction en expansion, surtout dans 
l’état le plus dense du nuage, la limite de Schwarzschild, probablement près 
du point tournant. Définissons donc l’opacité, à cet état, xs, par le rapport 
entre le rayon Rs du nuage à ce point et le libre parcours d’un photon selon 
la formule de Thomson, ce qui donne

oii ne est le nombre d’électrons par unité de volume à cet état. Pour Rs on a

(19)

Rs ,et avec np, le nombre -— de protons dans l’unité de volume, où /zs est la 
mp

densité à la limite Schwarzschild, nous obtenons

1 ne 1 ne
=------- -Nd, M --- ----------- N2mp. (20)

x§ np 2x$ zip
ne 

Avec a0 = 2Nd, cela nous donne pour xs la valeur -±----- c est-a-dire
- np

avec ne = np et t]i = 0.42, x = 6.75, valeur assez grande.

3. Quelques remarques sur le développement de la métagalaxie et sur 
l’origine du rayonnement isotrope

Les premiers calculs sur le développement de la métagalaxie, par Alfvén 
et Bonnevier et surtout par Laurent et al., bien que nécessairement très 
simplifiés, paraissent confirmer en grands traits l’hypothèse mentionnée 
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plus haul sur le rôle du rayonnement dans ce développement. Comme source 
primaire du rayonnement ils ont pris l’annihilation, mais dans le travail 
plus réaliste de Laurent a été inclus aussi l'effet Compton inverse - par lequel 
le rayonnement est augmenté pendant que le mouvement est freiné — et 
l’effet de la gravitation y est traité par la théorie d’Einstein, nécessaire dans 
le voisinage de la limite Schwarzschild. Dans un travail en préparation, 
Laurent a fait une étude approfondie de la probabilité de l’annihilation dans 
les circonstances en question; cl il paraît qu’elle est considérablement plus 
grande qu’on n’avait supposé dans les travaux mentionnés.

En ce qui regarde le rôle de l’annihilation, il faut souligner l’extrême 
improbabilité qu’un nuage (très raréfié) contenant environ 1078 protons et 
électrons, n’ait pas pratiquement des quantités égales des deux espèces de 
matière. Ici le problème est de trouver des mécanismes vraisemblables pour 
leur séparation, sans laquelle toute la matière du nuage devrait être anni­
hilée. Pour la solution de ce problème Alfvén a fait un commencement 
promettant, surtout par ce qu’il a appelé «l’effet Leidenfrost», la tendance 
d’accroissement de la séparation par l’attraction mutuelle des domaines de 
la même matière et la répulsion de ceux de matière opposée - causée par la 
pression créée par l’annihilation. Mais on ne connaît pas encore la grandeur 
des domaines séparés.

Ce qui suit, n’est qu’un essai préliminaire de tracer les grandes lignes 
d’une explication, par le modèle de la métagalaxie décrit plus haut, de ce 
rayonnement qu’on a considéré comme l’argument le plus fort pour la 
réalité de la cosmologie «big bang».

Supposons donc, qu’après une période de changements violents 
pendant laquelle la contraction du nuage a été freinée, l’énergie gravitation­
nelle étant transformée en rayonnement et la séparation des deux espèces de 
matière pratiquement accomplie (les champs magnétiques y jouant un rôle 
décisif) - le système se trouve près de la limite Schwarzschild dans un étal 
intermédiaire entre contraction et expansion.

Pour décrire mathématiquement cet étal un peu imaginaire, nous parti­
rons de l’état présent du modèle, dont la masse M est donnée par (13), tandis 
que la somme AI des masses de scs subsystèmes (pratiquement égale à celle 
de scs particules) est donnée par

57 = 5/-Z(^) (21)
où

^G/z) ?/z 3 f /' = f % 3(^z(l + r/F)1/2 “ 0 + Vï) + ôz))- (22)
J 0 J/71 + X2



Nr. 2 17

Aussi nous supposons qu’à cet état la métrique correspond à e = 0, ce qui 
veut dire que sa masse est égale à la somme des masses de ses particules, 
augmentée par celle du rayonnement Us/c2 à cet état, Us étant l’énergie cor­
respondante.

En ce qui regarde le développement subséquent nous allons faire 
l’hypothèse suivante — qui n’est certainement pas exacte, mais paraît justi­
fiée par les résultats, qu’une partie essentielle du rayonnement s’y comporte 
adiabatiquement, tandis que le reste, qui ne doit pas être grand, s’enfuit et, 
donc, ne contribue pas à la masse présente M. Pour M nous supposons qu’elle 
est pratiquement égale à cette quantité au temps présent, c’est-à-dire qu’elle 
est donnée par les formules (21) et (22).

Il faut encore remarquer que l’état près de la limite Schwarzschild est 
obtenu par une extrapolation en arrière en temps, utilisant la masse présente 
M, étant l’état le plus dense permis par elle. Il faut donc que la perte 
d’énergie du système, après que cet état est atteint, soit inconsidérable.

Sûrement, ces considérations, il faut les prendre avec un petit grain de 
sel, mais, heureusement, il y a quelques arguments à priori en leur faveur; 
d’abord le fait que cette solution de Friedmann, employée par Alpher et Her­
man dans leurs calculs regardant le rayonnement du « fire ball», est aussi vala­
ble dans notre modèle, autant qu’on peut négliger ce qui se passe à la surface; 
car c’est par là que le courant commence de se produire, un courant relatif 
aux systèmes de référence locaux. Selon cette solution l’abaissement de la 
température est dû au travail exercé par le rayonnement contre la force 
gravitationnelle, un elïet renforcé, quand il y a des électrons, par l’opacité 
produite par eux. Et, comme on sait, à la limite Schwarzschild la gravitation 
seule retient entièrement le rayonnement.

De plus, comme durant le processus adiabatique il n’y a pas de courant 
local, et comme la propagation du courant - de la surface jusqu’au voisinage 
du centre-où il est en tout cas faible-est très retardée à cause de la grande 
distance, un tel courant à notre position (près du centre) serait, selon nos 
considérations, à peine observable. Nous posons maintenant, selon les hypo­
thèses faites,

Us = c2(M-M) = 37c2(1 -Z(^)) (23)

et donc pour la densité us du rayonnement

us (24)

où 7? = arji est le rayon présent et Rs = asT]l est celui à la limite Schwarz-
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schikl. Avec 0 et ds étant les températures respectives présentes et à celte 
limite, on a, selon la loi de Stefan-Boltzmann,

zzs = gOg, u = 0Ø4 (23)

où la constante ç est égale à 7.65. 10-15erg (cm3 degré)-1. Et selon l’hypo­
thèse adiabatique on a

0 = ~6S (24)

d’où nous obtenons finalement

0 = (7 7,'?(1-z("i))1/4' (25)

Introduisons maintenant les nombres estimés pour rz0, a, /z et r/i 
(a0 = 1.23 x 1027 cm, a = 12.6 1027 cm, /z = 10-30g cm-3 et rji = 0.42 nous 
obtenons

0 = 3.1 5° K. (26)

U faut accentuer que ce modèle n’est qu’un essai préliminaire. Toute­
fois il me paraît qu’une explication réaliste du phénomène en question se 
fera plûtot dans cette direction cl non par le “big bang’’. Aussi il faut dire 
que la possibilité de décrire en grandes lignes l’évolution de la métagalaxie 
en utilisant les rapports d’Eddinglon ne les explique pas, ce qui demande­
rait une étude comparable à celle du problème analogue pour les étoiles.

Indleveret til Selskabet den 7. december 1973.
Færdig fra trykkeriet den 14. august 1974.
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Synopsis

We have studied theoretically the sharing of energy among the constituents of a polyatomic 
medium in random atomic collision cascades initiated by heavy atomic particles. Our main 
interest was to estimate the significance of possible nonstoichiometric effects as they might be of 
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density.
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1. Introduction

When an ion beam hits a solid target, the kinetic energy of the ions is 
dissipated among the nuclei and electrons of the medium. This energy dissi­
pation may result in a number of observable effects such as sputtering, 
disordering, ionization, dissociation, etc. The theory of energy dissipation in 
random and crystalline media has been developed in some detail, mostly for 
random, monatomic targets (for a recent review see, e.g., ref. 1). One of the 
central problems concerns the sharing of energy between the electrons and 
the nuclei of the system, i.e. the relative significance of atomic displacement 
effects (e.g. sputtering, disordering) on the one hand, and electronic excitation 
effects (e.g. photon and electron emission) on the other hand. According to 
theoretical predictions2), this sharing of energy depends significantly on the 
atomic numbers and masses of the bombarding ion and the target atoms, and 
on the kinetic energy of the ion. When single crystals are bombarded, the 
sharing also depends on orientation3).

In the present paper we deal with the sharing of energy between the 
different atomic species of a polyatomic random medium, with special 
emphasis being laid on binary compounds or alloys. By analogy with the 
sharing of energy between electrons and nuclei, one would expect, qualita­
tively, that the kinetic energy of a bombarding particle is not necessarily 
shared stoichiometrically between the different constituents of a polyatomic 
medium, i.e. that the sharing does not only depend on the composition, but 
also on the atomic masses involved. For example, in the limiting case of 
Rutherford scattering, it is easily seen that energy is dissipated preferentially 
among the lightest target nuclei, although even those, in this special case, 
receive several orders of magnitude less energy than what is dissipated 
among electrons.

When energy is deposited nonstoichiometrically, preferential displace­
ment of one particular atomic species may result, and, moreover, composi- 

1*
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tion changes may occur near the surface due to preferential sputtering. Most 
probably neither effect is determined by energy sharing alone, but an under­
standing of energy sharing is a basic requirement for further theoretical 
treatment of effects connected with different binding energies and mobilities 
of the atomic species.

Nonstoichiometric effects have been observed in sputtering410). Their 
occurrence appears to be well established, whilst very little systematics has 
yet developed from these studies. The interpretation will almost certainly 
be complicated in view of the fact that the sputtering yield of a binary 
material, according to experimental observation, may be significantly higher 
or lower than the sputtering yield of either of the pure materials1012). Even 
rather small amounts of (alloyed or implanted) impurities may influence the 
sputtering yield significantly in either direction, dependent on the implanted 
species13). Surface topography appears to be a particularly important factor 
in determining the sputtering of alloyed targets14’ 15>. Systematic nonstoichio­
metric effects may be observed in experiments with single crystalline targets 
such as GaAs16’ 17). In view of all these competing effects the present investi­
gation is hardly more than one step forward on a rather long way towards 
a comprehensive understanding of the sputtering of compound targets.

While the theory of ion ranges in polyatomic targets is well developed18-20), 
the theory of energy deposition in such targets, apart from a few early inve­
stigations of Frenkel-pair production21-23) has concentrated on the gross 
spatial distribution of deposited energy20- 24) and the overall sharing of 
energy between nuclei and electrons24’ 25). In view of a lack of knowledge of 
atomic scattering cross sections, it was not possible in the early work on 
Frenkel-pair production21-23) to arrive at quantitative criteria for the im­
portance of nonstoichiometric effects in defect production. In fact, only the 
influence of different displacement threshold energies was considered in 
detail.

In this communication, we concentrate on random collision cascades 
mainly in diatomic solids, with the aim of estimating the relative and, less 
extensively, absolute numbers of recoiling or moving constituent atoms, 
mostly at keV bombarding ion energies where effects of nuclear stopping are 
most pronounced. Both with a view on potential applications, and in order to 
isolate possible nonstoichiometric effects, we are in particular interested in the 
case of widely different masses of the constituent atoms. This latter attitude is 
somewhat complementary to that of earlier investigators21-23) while it is 
similar to that of Kistemaker et.al26) who investigated energy dissipation in 
organic materials qualitatively.
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The basic integral equations used in the analysis (sect. 2) are equivalent 
to those used before23) in similar problems. The specific results are restricted, 
first to a special class of cross sections (sect. 3) and, second, to binary targets 
(sects. 4 and 6). The ternary case is considered briefly in sect. 5. We mainly 
consider asymptotic solutions for high ion energy as compared to the relevant 
recoil energies; in sect. 7 we briefly discuss the limitations to this approxima­
tion. In sect. 8 we discuss some physical implications and the relation to 
experimental results.

Electronic stopping is neglected in part of the analysis. This approxima­
tion restricts the energy range under consideration, but it will be shown that 
mostly absolute rather than relative numbers of moving atoms are affected by 
this simplification.

The presentation of the basic physical model will be kept brief. The 
reader who is less familiar with the notation and the way of argument is 
referred to ref. 1 for an introduction.

2. Basic Equations

Consider a random, infinite medium with Nj = 0CjN atoms of type j 
(atomic number Zj, atomic mass M/) per unit volume, aj (0 < a; < 1 ; 
2«; = 1) is the concentration of j-atoms, and N the atomic density [atoms/ 
cm3]. Let an atom of type i with initial energy E slow down in the medium.

For radiation damage calculations, we need the recoil density27) Ftj(E, Eq) 
which is defined as the average number of /-atoms recoiling per energy 
interval (Eo, dE0) in a collision cascade initiated by an z-atom with initial 
energy E.

For sputtering calculations we need the slowing-down density1- 28) 
Gij(E, Eq) which is the average number of J-atoms moving per energy interval 
(Eo, dE0) in the stationary state, with ip [z’-atoms/scc] slowing down from 
energy E.

Following a well-known procedure1), 
can be derived for Ftj and Gq,

^kj}
k J 2Vt7o

the following integral equations

dcfij(E, Eq)
(1)CCa

1 dE„

- J (2)
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where Fy = F^ÇE', Eo~) and Fy = FyÇE", Eo), etc. Furthermore, E' and 
E" are the energies of a scattered i-atom and a recoiling Å’-atom, respectively, 
after a collision that is governed by the differential cross section datk(E, E', E") 
The quantity t>0 is the velocity of a j-alom with energy Eo, and d(?ij(E, Eq)/ 
dE0 stands for

f doij(E,E',E")ô(E"-E0).

E', E"

The integral operators on the left-hand side of eqs. (1) and (2) are iden­
tical. However, eq. (2) has the form of an equation determining the Greens 
function of this integral operator. Hence, the functions Fy and Gtj are inter­
related in the following way,

(3)

Eq. (3) can be verified by insertion into eq. (1), interchanging the order of 
integrations, and utilizing eq. (2). Hence, once eq. (2) has been solved, Fy 
follows from Gij by integration according to (3). Both equations are equiva­
lent to those used in ref. 23, although the present notation is more general. 
Furthermore, we use integral equations in the so-called “backward” form29), 
while previous authors mostly used the forward form.

Eq. (2) will have to be solved subject to the boundary conditions

Gv(E,Eo) = O for E<E0. (4)

In the special case of a binary medium, eq. (4) even holds for E < Eolytj 
where

yij = + Mj)2 (5)

The following (usual) approximations will be made in order to solve eq. (2):

i) No binding energy is lost by recoiling atoms,*
ii) Electronic stopping is separated according to the scheme of Lindhard 

et.al2k

* This simplification is dropped in appendix B.

Then eq.(2)reads

d(jik(E, T){Gtj(E,E0) - Gtj(E - T,E0) - G^-(T,Eo)}
k

+ XkSe, ik(E') —— Gij(E, Eff) = — —ÔtjÔ(E - Eo) 
k oE Nv0

(2a)
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where *S e,a(E) is the electronic stopping cross section for an z-atom colliding 
with a Å'-atom, and T the recoil energy. The cross section d(Jik(E, T) is that 
of elastic collisions.

It is most often possible to define an elastic-collision region2) E~Ee where 
electronic stopping is relatively small, so that it can be neglected as a first 
approximation. In this case we shall see (sects. 3, 4 and 5) that

Gtl(E,E„) ~ g^E^-E for E,«EXE, (6)

where gj^Eç) is a well defined function. The important features of eq. (6) 
are i) the linear dependence on E and ii) the nonoccurrence of the index i on 
the right-hand side.*  From eqs. (2a) and (6) one verifies immediately that 
the following extension holds for higher energies beyond the clastic-collision 
region

Gq(E,E0) ~ ^(E0)vi(E) for 7t0 « Ec and E > Ec (7)

where the Vi(E) obey the set of equations

f z7
dcïik(E, T){vi(E) - vi(E - T) - n(T)} + ^<x.kSe>ik(E')‘ —-vi(E) = 0 (8) 

k J k dE

This is the generalization to polyatomic media of an integral equation 
first derived by Lindhard etal.2>3°); a computer code for its solution has 
been worked out by Winterbon25). It is obvious from eqs. (6) and (7) that, 
in order to determine deviations from stoichiometric energy sharing, we 
need the gj(E) function rather than vz(E'). Since the former can be determined 
by solely considering the elastic-collision region, we shall restrict our attention 
to this region in the following sections. This simplifies the analysis substan­
tially.

It may be stressed that the present argument is based on the existence of 
an elastic-collision region. For very different masses of constituent atoms, 
e.g. the case of a target containing very heavy atoms and hydrogen atoms, 
Ec may be prohibitively small. In such a case, caution has to be applied with 
respect to quantitative conclusions.

gj(E0) does, however, depend on all the constituents of the medium. See, e.g., eqs. (24a, b).
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3. Power Cross Sections

The solution of integral equations of the type of eq. (2a) is facilitated 
greatly by use of a power cross section of the form31)

da(E, T) = CE~mT~1~mdT; 0 < m < 1 (9)

This cross section describes approximately the scattering of two Thomas- 
Fermi atoms over a limited range of energy E and recoil energy T. The 
proper value of m depends essentially on the product E-T and on the ion­
target combination31’ 20). At present, we apply eq. (9) in the form

dai}(E, T) = CijE-mi T^-^dT- 0 < T < yijE (10)

in order to allow greatest possible generality within the inherent simplicity 
of the power cross section.*  We note that eq. (10) is somewhat more general 
than the cross section used in ref. 23, since it allows for a variety of energy 
dependences of, e.g., the stopping power. We shall see below that this genera­
lization is significant.

In sect. 6 we shall need more specified constants Cq.We use the two forms

Mi
Mi

and

The first choice31) corresponds to Thomas-Fermi scattering with the screening 
radius

czy = 0.8853 a0(Zf/3 + Z22'3)“1/2 (Ila)
and31’ 20>

21/2 = 0.327; 21/3 = 1.309; (lib)

The second choice28) corresponds to exponential interaction with32)

* Preferably one would use exponents instead of m/; however, this would mean a 
substantial complication in the algebra. In fact, we have not succeeded in deriving eqs. (25) and 
(28) in this latter case, although the Laplace transform can be carried out easily. One might also 
suggest to use an index mj. This would still be substantially more complicated than using 
and, more important, would be physically a less reasonable choice than the one adopted in eq. (10).
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and 28*

= const. = 0.219 X;

A'i} = 52(ZiZ;)3/4eV;

^0.055 = 15*;  z0 = 24.

Since we need mostly the cross sections at low particle energy Eo (in the 
eV region) when calculating recoil and slowing-down densities28- 34*,  it is 
mostly the expressions (10b), (11c), and (lid) that will be used in applica­
tions. However, for low-mass ions - up to about oxygen - the Thomas-Fermi 
coefficients can be expected to be appropriate even in the lower eV-region, 
and will be used, therefore.

A convenient procedure of solving integral equations with a cross section 
like (9) has been described in detail by Robinson33* and one of the authors1* 
for the monatomic case. Straightforward generalization to the present situa­
tion is possible. Inserting da^ÇE, T) as given by eq. (2a), setting Se,tk(E) = 0, 
introducing the variables

// = Eoeu; T = Eoev,

following the procedure of ref. 1, and taking the Laplace transfrom with 
respect to the variable u yields

 wE^i-1
Gij (s) 2 ßik (S) £ik (,s) — 2 ßik (s) Gkj (S) = 77 ^0

k k NvQ

where 

and

v8~mi
ßik(s) =--------- GCkCik

s - nu

(12)

(13a)

(13b)

By(æ, y) is the incomplete beta function,

B/.r.i;) = - Z)’’1 (14)

and Gq(s) the Laplace transform
poo

<5q(s) = due-8MG(E0ett,E0) (15)
J o

where use has been made of eq. (4).

* This value has been extracted from fig. 4 of ref. 28. It is rather uncertain. Note that for the 
high-energy portion of Born-Mayer interaction, a value about half as large was reported in ref. 28.
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Eq. (12) is a system of algebraic equations that splits up into separate 
subsystems, one for each target element j. All the subsystems have the same 
determinant, but different inhomogeneities on the right-hand side.

In accordance with eq. (6), we arc looking for solutions in the region 
E » Eo, i.e. large values of u. The procedure of determining asymptotic 
solutions is a generalization of the one described in detail in refs. 1,33,34. 
The main problem is to find the highest value of s, say s = sff where 
Gp(s) has a single pole. Then, Gtj(E,Eo) has the asymptotic form

Gy(E,E0)~ Ay(E/E0)^0> for E » Eo (16)

where Ay is the residuum of Gy(s) at s = Sy\ Some properties of the asympto­
tic expansion will be analysed in the following in the special case of a binary 
target. At present we discuss, somewhat loosely, some simple consequences 
of eq. (12).

Poles of Gp(s) may occur at the zeros of the determinant of eq. (12) and 
the poles of the subdeterminants. According to (13a, b) poles of subdetermi­
nants might occur at s = /m, and at some discrete negative values of s. 
The determinant, on the other hand, is expected to have a zero at s = 1, just 
as in the monatomic case. Indeed, from (13b), it follows that

eu(l) = 1. (17)

With this, the determinant achieves the form

D(l) = Det{öilc2ßuO)-ßik(l)} (18)
i

which is obviously zero. Moreover, it follows from (12) that

Gij(s) ~ Gkj(s) for s~l (19)

or, from (16), Ap = A*;.  This proves eq. (6). The remaining problem is to 
calculate gj(Eo). This will be done by evaluating determinants.

In appendix A we prove that s = sff = 1 is the highest singularity for a 
general polyatomic target. This is not surprising from a physical point of 
view. It is evident already from eqs. (1) and (2) that energy conservation in 
binary collisions requires solutions that are asymptotically (E » Eo) linear 
in energy, and independent of the bombarding particle.
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4. The Binary Case. I

With the abbreviation

=
yE2mrl

Nv0

the system of equations (12) has the solutions

where
£)(2) = — 1) + ^12612] [^22(^22 — 1) + ^2ie2i] ” /)i2^2i (22a)

— ^22(e22 O + /^21e21

= -ß21.

For s = S<°> = 1, and observing (17), we obtain

Gn(s) ~ b2i(s)-------------- , — tor ,s ~ 111V 7 21V 7 (s- 1)77(1)

, (i , Kwhere I) (s) = —D(s). !’
ds

Similarly, or by interchanging indices, we obtain

/ \ Z- / \ ^2^12(1) f 1

G22(s) ~ b12(s) ~ ------r for ~ I22V 7 12V 7 (s - 1)7) (1)

Applying inverse Laplace Transform, we obtain asymptotic solutions

bn(E) ~ G21(E) ~
E B^21(l)
Eo 7/(1) ’

or S'1(^0)
Blj21(l)

EOD'(1)
(24a)

E 712/312(1)G22(E)~ G12(E) ~ — ^?(1) ; or ^2(^0)
-^2^12(1)

(24b)

These equations provide the connection with eq. (6).

We drop the index (2> from D<2) for the rest of this section.
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(25)

where

(26)

the nuclear stopping cross section of an i-atom colliding with a

term. This yields, in the same notation as

(27 a)
7)'(1)

F22(E) ~ E12(E) (27b)
7/(1)

From this we obtain the ratio

(28)

where again eq. (26) has been used. Eqs. (25) and (28) show that in general

i) the ratio of the fluxes of moving 1-atoms to moving 2-atoms is propor­
tional to the ratio of the respective concentrations, bid not nessecarily 
identical with it, and

ii) an even more pronounced deviation from stoichiometry is expected 
in the ratio of the number of recoiling 1-atoms and recoiling 2-atoms, 
since the concentrations enter nonlinearlv.

Sa(E) is 
Å-atom.

Next,

If we take the ratio of the fluxes of moving atoms of the two species, the 
determinant and the ion energy drop out, hence*

* We include the velocity v0 in p0G^-(E, Eo) because of the index j in v0 = \ 2E0/Mj. Note 
that both in sputtering theory28) and in eq. (3) it is actually this product that is important.

we insert eq. (24a, b) into eq. (3), and evaluate Eij to the highest 
power of E/Eo, i.e. the linear
eq. (24),

1 — nt 1

P0^11(7t) P0G21(7s) ^11 (^)

^0^12(7^) t?0G:12(E) u0G22(E)

ai •821(^0)

a2 S12(E0)

S«(E) - ßu(l) =
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5. The Ternary Case

We briefly mention the asymptotic solutions for the case of a ternary com­
pound. From (12) we obtain.

Gn ~ ^21
D^E 

D™' Eo
(29a)

^12 ~ ^22
n(3)' e0

(29b)

E
^13 ~ ^23 ~ ^33 ~ jry3T'^~ (29c)

where

= ßzißsi + ^21^32 + (^23^31 (30a)

= cycl- perm. (30b)

/J33 = cycl. perm. (30c)

7)0)' = yD(3)(s)/s = 1 = (ßne'n + ß12e'12 + ß13e'13)I)^ + cycl. perm., (31) 
as

(32a)
7)<3>'

(32b)
D<3V

(32c)
7)(3)/

and the upper index (3) indicates the ternary case. Both D(ik\ e'ik, and ßik 
are taken at s = 1. The Bi are given in eq. (20). It is straightforward to 
determine relative magnitudes of the Gtk from eqs. (29—31).

By applying eq. (3) to the ternary case, we readily obtain

Evaluation of Ga and Fa in terms of stopping powers can be made by use 
of eqs. (35) and (26). We shall not go into any further details with the general 
ternary case.



14 Nr. 3

6. The Binary Case. II

In this section we discuss in more detail some implications of the equa­
tions derived in sect. 4 for the binary case. For illustration we have evaluated 
numerically the solutions in a few specific cases.

Let us first consider the ratio between the slowing-down densities. Eq. (25)
may be written

~ _2 . - 2* . X ■ E20<m'~m>\ (25a)
PoG2 X2 C12

where the constant
1 — III.X = _____ ~ m*
1 _ m2

is of the order of one (In view of eq. (6), we dropped the first index from 
Gif). For strictly stoichiometric behaviour, we would just have xfx2 on the 
right-hand side of eq. (25a). If m1 =1= in2, the ratio (25a) depends on the 
energy Eo, and in such a way that the fraction of moving atoms of the lighter 
species increases in the upper parts of the energy spectrum. If m1 = in2 = in,
(25a) reduces to

V()G1 .. al. û'21 «it0/A2”
Pq 2 a2 C12 «2 W

(25b)

according to eqs. (10a, b). Then the deviation from stoichiometry does not 
vary over the energy spectrum (for Eo « E) and is determined solely by the 
mass ratio and in. Since in > 0, the lighter species dominates at those energies 
where (25b) is valid.

The ratio between the recoil densities, eq. (28), is energy-independent 
even for inA += m2, as may be seen by inserting

into eq. (28), 

Sa(E0) =

F,
<*1

«i

■ y™1“1 ■
C11

c]2
+ a2

ai
= - - y

a2f2 a2
«2

L21
+

(28a)

where again the first index was dropped from Fij. Here the factor Y depends 
on concentration, and its variation with a! and a2 determines the deviation
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from stoichiometry. For small amounts of one of the constituents, (28a) 
reduces to

F) otj S11(£'o)
F2 a2 S12(E'O)

oc i Gin i
-■^7wl_1(a2 « 1)
<x2 C12

(28b)

(28c)

A useful dimensionless quantity in the calculation of the average number
Ni of displaced z-atoms is the displacement effiency33) Ki, defined by*

E
-----------az • Ki
Ed, i

(33)

Ed,i is the displacement threshold energy for atoms of type i. In the mona­
tomic case one obtains27)

m
K = ------------------------ , (34)

¥>(1) - V>(1 “ /n)
6

i.e. 0 < K < — for 0 < m < 1.
7l2

For the numerical examples, we have chosen binary compounds of 
rather different masses : Tungsten Oxide (y = 0.295), Uranium Carbide 
(y = 0.183), and Copper-Gold (y = 0.738). In the calculations we have used 
the two values of m, 0.055, eq. (lid) and 0.333, eq. (lib). Both choices 
m1 =h m2 and m1 = m2 have been considered. In the case of different m-values, 
in = 0.333 has been used for the lighter element, and m = 0.055 for the 
heavier one.

According to eq. (24), the slowing-down density Gt is determined by an 
equation of the form

(35)

Figs, la and lb show the energy dependence of this quantity for W and 
O in W-0 compounds, plotted for concentration 0, 1/4, 1/2, 3/4 and 1, in

* The present model for the displacement number is oversimplified, since it does not take 
into account replacement events. Therefore, the displacement efficiency can become greater than 
0.5, contrary to the result of ref. 33. Although replacements constitute another interesting aspect 
of collision cascades in polyatomic targets, we refrain from including them here, since the available 
models seem to be even less quantitative than those for displacement. In particular, no experi­
mental data are known to us for replacement threshold energies for any system.
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25 50 100 200
E0-eV

Fig. 1. Slowing-down densities of each of the two constituents of three binary compounds in 
relative units, eq. (35), as a function of spectral energy _E0. Parameters mø, m pp, etc. refer to the 
scattering law, eq. (10). Note the different energy dependences of the spectra in case of m1 m2.

Full-drawn and stipled lines refer to the heavy and light constituent, respectively.

Fig. la. Tungsten oxide, mg > mpp.
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Fig. Ib. Tungsten oxide, iuq = m^; this graph is presumably less realistic than fig. la.
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Eo, eV
Fig. le. Uranium carbide, mø > mø.
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25 50 100 200

Eq , eV
Fig. Id. Uranium carbide, me = mu; this graph is presumably less realistic than fig. lc.

2*
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Fig. le. Copper-gold alloy, mCu = mAu
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1.0 0.5 0.0 cty/
a

1.0 0.5
b

0.0 du

Fig. 2. Slowing-down densities Gx and G2 of each of the two constituents of three binary com­
pounds, normalized to the values of the respective pure media, G, as a function of concentration. 
The ratios GjJG do not depend on spectral energy Eo. In addition to the two combinations of 
scattering parameters used in fig. 1, a third one with = 0.333 has been included for
illustration. Full-drawn and stipled lines refer to the heavy and light constituent, respectively. 
Apart from a constant factor given by eq. (25a) or 25b), thin fulldrawn lines refer to stoichiometric 

variation.
Fig. 2a. Tungsten oxide. The two curves with mg > mpp are presumed to come closest to reality. 
Fig. 2b. Uranium carbide. The two curves with mg > mg are presumed to come closest to reality.

1.0 0.5 0.0 dAu
Fig. 2c. Copper-gold alloy. Only the two curves with mgu = m^u have been included. 
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case of mo > mw and mo = mw, respectively. The variation of the expression 
(35) at fixed energy with composition is illustrated in fig. 2a. We notice that 
the variation of Gt near a$ = 1 is much weaker than the stoichiometric 
variation. The qualitative conclusion appears justified that the total number 
of moving matrix atoms in a nearly pure target is almost unaffected by 
alloying impurities of widely different mass.

This effect can be understood qualitatively. The slowing-down density is 
determined both by the number of atoms set in motion and the time for 
slowing-down. Alloying an impurity of very different mass causes a decrease 
in the former quantity (the recoil density), but an increase in the latter.

As might be expected, this effect is even more pronounced in the case of 
U-C (figs, lc + d and 2b), and less pronounced in Cu-Au (figs, le and 2c).

The recoil density, Fi, is determined by eqs. (27a, b),

Fi = Eq • Ci', Eo <X E, (36)

where Ci = oci'Ki. The variation of the expression (36) with recoil energy Eo 
for W and 0 in W-0 compounds is shown in figs. 3a + b for mo > mw and 
mo = mw, for concentration 0, 1/4, 1/2, 3/4 and 1. For mo > mw, the heavier 
component recoils preferentially. This arises from the sensitivity of the recoil 
density to the steepness of the differential cross section2’ 33>, the latter being 
greatest for the largest value of m according to eq. (9).

The variation of the displacement efficiency Ki with concentration is 
shown in fig. 4a. As one might expect, the displacement efficiency is almost 
independent of concentration in the vicinity of a« = 1. When becomes 
smaller, Ki drops gradually to a significantly lower value. The relatively low 
displacement efficiency of impurities (a « 1) is due to the comparatively 
inefficient energy transfer in collisions with host atoms and the small chance 
for impurity-impurity collisions. The same features are observed for U-C 
and Cu-Au, see figs. 3c-e and 4b + c.

Figs. 5a—c contain the same information as fig. 4. We have plotted the 
factor Y in eq. (28a) as a function of concentration. This factor represents 
the (concentration-dependent) deviation from stoichiometric behaviour of 
the recoil density. The upper and lower limits of Y are determined by eqs. 
(28b, c).

To make sure that our results do not hinge heavily on the detailed assump­
tions concerning the displacement process, we estimated in appendix B 
the influence of an atomic binding energy, and especially the significance of 
different binding energies of the two constituents, on the slowing-down 
density.
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25 50 100 200
!d (3/1 )

E0.eV
Fig. 3. Same as fig. 1 for the recoil densities, eq. (36). Note that all energy dependence goes as 

F -2
Fig. 3a. Tungsten oxide, mø >mjy.
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Fig. 3b. Tungsten oxide, mo = mw-
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Fig. 3c. Uranium carbide, mç > mjj.
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Fig. 3d. Uranium carbide, mp = my.
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Fig. 3e. Copper-gold alloy, mCu = mAu-
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1.0 0.5 0.0 au
a b

Fig. 4. Displacement efficiencies K1 and A'2, eq. (33), of the two constituents of three binary com­
pounds, as a function of concentration. As in fig. 2, three combinations of scattering parameters 
m1 and m2 were used. Full-drawn and stipled lines refer to the heavy and light constituent, 

respectively. Stoichiometric behaviour would correspond to straight horizontal lines.
Fig. 4a. Tungsten oxide. The two curves with mø > mw are presumed to come closest to reality. 
Fig. 4b. Uranium carbide. The two curves with mø > mjy are presumed to come closest to 

reality.

1.0 0.5 0.0 aAu
Fig. 4c. Copper-gold alloy. Only the two curves with møu = m^u have been included.
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a b
Fig. 5. Ratio of recoil densities of the constituents in three binary compounds, normalized so 
that stoichiometric behaviour would correspond to the dashed horizontal line. As in fig. 2, three 
combinations of scattering parameters and m2 were used. Note the different scale in fig. 5b.

Fig. 5a. Tungsten oxide.
Fig. 5b. Uranium carbide.

Fig. 5c. Copper-gold alloy.

1.0 Ctcu
0.0 Qau
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Fig. 6. The poles of the Laplace transform G(s) for a monatomic medium, as a function of m.
The principal pole at s(°) = 1 has been omitted.

7. Range of Validity of the Asymptotic Solutions

We should like to estimate the range of validity of the asymptotic solutions 
(24) and (27). This is conveniently done by finding the correction terms in 
the asymptotic expansions, i.e. determining residues at subsequent poles of 
the Laplace Transforms, Go(.s’) and F'aÇs).

In the case of a monatomic target, this problem has been discussed in 
ref. 34, in which it is shown that the higher-order poles, s<2), . . ., etc. obey 
the inequalities — i + m< s«) < —i + 1. The positions of the poles s<b, . . ,,s<5\ 
in the monatomic case, for 0 < m < 1, are plotted in fig. 6. No poles are 
found in the interval 0 < s < 1. Therefore, for a monatomic target the 
asymptotic solution has a remarkably large range of validity1).

In the binary or polyatomic case, the situation is substantially more 
complicated because eq. (6) only holds for the principal term in the asymp­
totic expansion. The subsequent terms do not only depend on the target (j) 
but also explicitly on the projectile (i). For the sake of simplicity we restrict 
the discussion to binary targets and analyse the possibility of poles ocurring 
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between zero and s = 1. However, since eq. (6) is not generally valid we 
want to treat the problem for an arbitrary projectile, 3. This is conveniently 
done by considering a ternary target (sect. 5) with species 1, 2, 3, but a3 = 0. 
The complete set of solutions of eq. (12) is then given by :

513 = 0

G23 = t)

Ö33 = ^3/ [^31£31 + /^32fi32 ]

512 = ^2 ’ ßl2^^
(j22 = ^2 ’{/51(£11— 1 ) + ßl2E12\lD^
G'32 ~ ^2 ‘{^12^31 + ßü2 I /51(£11~1) + (^12£12 [/^31fi31 + ^32£321}

511 = -^1 '{/^22(e22— 1 ) + ^21£21}/

(i21 = ‘ ß21l^^
Gäl ~ -ßl‘{^21/^32 + /^31 [/^22(£22—I ) + /^21e21 ]}/{-^24/^32e32 + /^31e31 ]}

(37)

(38)

where we have used the notation of sect. 4. Of these equations, only the six 
lower ones are of interest here. Furthermore, because of symmetry we may 
concentrate on the lower three equations. The poles and residues of 5n, 
G21 and S31 determine the number of moving 1-atoms when particles of type 
1, 2, or 3 impinge on a 1-2 compound. Writing 531 in the form

^31

facilitates the discussion.
From eq. (13a) it follows that \ßik\ = °° for s = nil-; otherwise ßik is 

finite and nonzero. According to (13b), the product ßikEik is zero for s = 0, 
positive for s > 0 and negative for s < 0. Therefore, poles of 031 may only 
occur at

(i) s = 0,
(ii) s = ziq or m2, and
(iii) the poles of Gn and 521.

For s = 0, insertion of eqs. (13a) and (13b) into (37) shows that GX1 and 
52i have finite values at this point; G31 has a pole at zero because of the 
vanishing factor /?32e32 + ßai£3i in the denominator.

The occurrence of poles at s = nq or m2 depends on whether or not some 
(or all) of the parameters nq, m2, and zn3 are identical. It can happen that 
531 has a pole here, but not 51X or G21.
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Fig. 7. Deviation of the slowing-down density Gij(E,E0) from asymptotic behaviour. We plot 
reciprocal Laplace transforms Gn, G21, and G31 versus s. For details see text.

Fig. 7a. Moving oxygen atoms in WO3
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The number and distribution of poles in the remaining part of the inter­
val will depend on the parameters a/, Ctk, and m/.

We have analysed numerically the case of a W-0 compound bombarded 
with IV, 0 and Xe. The positions and residues of the poles of Gn, G21 and G31 
were determined, and their variation with concentration and choice of 
scattering parameters was investigated. Since the parameters are chosen so 
as to give a good description at low spectral energies, i.e. near s = 1, caution 
is required in drawing detailed physical conclusions from the correction 
terms to asymptotic behaviour.

An example is given in fig. 7a and b. For clarity, we have plotted the 
reciprocal values of Gu, 021 and G31 versus s, so that the poles of the G-func- 
tions show up as zeros, and the residues may be determined from the inverse 
slope of the 1 /G — curve.

Fig. 7a shows the 1/G - functions for oxygen in a WO3 target bombarded 
with oxygen, tungsten, or xenon, corresponding to Gn, G2l or G31, respectively. 
We first note that all three curves pass through s = 1 with identical slopes, as 
it should be expected from the results of sect. 3. Second, we notice that 1 /G31 
has the expected zero at s = 0, and the other two curves do not.

Two additional zeros occur at s2 ~ 0.17 and sx ~ 0.46; these are common 
for all three curves. Thus, the second term in the asymptotic expansion 
varies approximately as l/E/E0 in all three cases. As may be seen from the 
figure, the residues at the second pole sx are comparable in magnitude to the 
residuum at s = 1.

Fig. 7b shows the corresponding curves for tungsten in WO3, bombarded 
with tungsten (Gn), oxygen (G21) or xenon (G31). A very similar behaviour 
is observed, except that an additional zero occurs at s = 0.333 for 1 /G3l. 
Again, we observe that the second term in the expansion varies approximately 
as j/E/Eo-

We conclude that the occurence of poles in the interval between zero and 
one narrows the range of validity of the asymptotic solution as compared to 
the monatomic case. As a rule-of-thumb the second term varies approxima­
tely as j/E/E0 as a function of energy.
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8. Discussion

The major uncertain quantity entering the theory is the constant C in the 
power cross section (9), in particular its value and mass dependence for 
m < 1/4, eq. (10b). Therefore, the results presented in fig. 1 for the slowing­
down density can at most be considered qualitative. The other graphs, in 
particular figs. 2 and 4, show the slowing-down and recoil densities in a 
suitably normalized form so that the inherent error is minimized.

Consider the recoil density first, and its connection with the number of 
displaced atoms. Previous work in this field21'23) concentrated on the total 
number of displacements created in a compound target by a primary particle. 
The displacement model of Kinchin & Pease36’ was usually adopted as well 
as a strongly simplified model for the scattering cross sections. Baroody21) in 
particular assumed a fixed concentration, <x1 = a2 = y. The main uncertainty 
was the displacement model which, for a binary target, contains at least four, 
perhaps six, essentially unknown parameters, i.e. two displacement thres­
holds, two replacement energies and, perhaps, two lattice binding energies. 
In most applications, the displacement and replacement energies were all 
set equal (" = Ea"), and the binding energies were either ignored or set equal 
Ea, too.

In the present calculations, we allowed for more realistic scattering cross 
sections, in particular for different energy dependences of the various cross 
sections involved. Except for appendix B we ignored binding energies, but 
eliminate a substantial part of the remaining uncertainty by plotting individual 
displacement efficiencies rather than defect numbers.

Eig. 4b shows that, for a uranium target with a few per cent alloyed car­
bon, the displacement efficiency of uranium atoms is six times as great as 
that of carbon atoms. In addition, when the carbon content increases from 
0 to 40 per cent, the displacement efficiency for uranium remains essentially 
unchanged while the one for carbon increases by a factor of three, approxi­
mately linear with concentration. To our knowledge, such pronounced 
deviations from stoichiometric behaviour have not been predicted previously.

We are not aware of any experimental results that could be analysed 
directly in terms of a graph like fig. 4. Experiments to check these predictions 
(e.g. by channeling37)) seem most promising when dealing with low, but 
varying concentration of one of the two species, since then the displacement 
threshold energies may be considered with reasonable confidence to be 
independent of concentration.

3*
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Obviously, fig. 4 predicts a pronounced difference in the behaviour of 
dopant atoms under irradiation between the case of bombarding electrons 
(where single defects dominate) and bombarding heavy ions or fast neutrons 
(where displacement cascades dominate).

Let us now go over to sputtering. According to ref. 28, the flux of sputtered 
atoms is determined by

i) the slowing-down density,
ii) the spatial distribution of deposited energy,

iii) the surface binding energy.

The two key problems in the sputtering of compound targets are

a) how is the total sputtering yield related to the sputtering yields of the 
respective pure targets, and

b) what is the composition of the sputtered material.

We have to note that any deviation from stoichiometric sputtering will 
cause a change in composition of the remaining target material, such that the 
target is no longer homogeneous. Homogeneity, however, is a vital assump­
tion entering our basic equations. Thus, the present theory can at most be 
applied to low-dose sputtering experiments, i.e., experiments involving 
sputtering of, say, one monolayer of target atoms. Such experiments have 
been performed on pure metallic targets (e.g. Andersen & Bay13)) but, with 
one exception (see below) not on compound targets. The following con­
siderations will, therefore, be kept brief and qualitative.

Il is appropriate to distinguish between sputtering experiments performed 
at low and high bombarding energy, the former category referring to energies 
around or below 1 keV. Pronounced depletion of surface layers due to 
preferential sputtering has been reported in low-energy sputtering experi­
ments (e.g. Asada et al.4), Anderson7), Tarng et al. 9>). Because of the small 
penetration depth of low-energy ions, only a very shallow surface layer can 
be involved in the sputtering process proper. The occurrence of a massive 
depleted layer is, therefore, indicative of a competing migrational process. 
Such a process may also be a disturbing factor in high-energy sputtering ex­
periments, and its influence needs to be checked by, e.g., variation of the 
target temperature during bombardment.

A number of higher-energy sputtering experiments dealt with the Cu3Au 
system4-6* 8>. In high-dose experiments a gold-rich surface layer was obser­
ved5- 6). However, quantitative data on sputtering yields were only determined 
by Ogar et al.8). No bombardment doses were given, but since the sputtered 
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material was detected by neutron activation, one may assume that only few 
atomic layers were removed. The copper:gold sputtering ratio for Ar+ and 
Hg+ bombardment in the 10 keV region was observed to be slightly smaller 
than 3:1. The authors proposed preferred migration of gold atoms to the 
surface as an explanation. Since the observed deviation from stoichiometry 
is rather small (~ 10 °/0) it does not appear feasible to make a definite 
statement on the actual source of nonstoichiometry. The slowing-down den­
sities excluding bulk binding forces behave in such a way that preferential 
motion of copper atoms would be predicted (eq. 25b). However, inclusion of 
binding forces produces a shift in the right direction, the magnitude being 
uncertain (appendix B). Inclusion of, e.g., focused collision sequences in the 
sputtering mechanism would seem to enhance the contribution of copper 
atoms rather than decrease it. Finally, if gold atoms should migrate indeed 
preferentially, one might also have to consider the possibility of a lower 
surface binding energy of gold atoms.

Ogar et al. also determined absolute partial sputtering yields for copper 
and gold atoms, respectively. They report a partial sputtering yield for copper 
from the Cu3Au alloy that is about twice as large as the sputtering yield of 
pure copper under equivalent bombardment conditions. It follows from fig. 
2c that such a pronounced effect cannot originate in a drastic change of the 
slowing-down density as compared to the pure target. Neither does it appear 
feasible that the surface binding energy of copper atoms differs by a factor of 
two from the one valid for a pure copper target. We assert the change in 
sputtering yield to be essentially due to the different spatial distribution of 
deposited energy. Indeed, alloying heavy gold atoms to a copper target causes 
a pronounced decrease in ion penetration due to increased importance of 
large-angle scattering1’ 20) and, therefore, increased energy deposition at the 
target surface. A quantitative evaluation is not given here since the measure­
ments of Ogar et al. were done on CusAu single crystals while existing cal­
culations refer to random targets.

Pronounced deviations are expected from stoichiometric sputtering in 
metallic alloys of very different masses. Figs. 2a and 2b indicate that the 
fluxes of both the heavy and the light constituent increase as compared to the 
pure targets, in terms of the respective concentrations. The flux of heavy 
atoms increases most pronouncedly. However, the ratio of fluxes at any 
given concentration behaves in a more complicated manner. Figs, la and 
lc show that there may be different energy dependences, and comparing, e.g., 
figs, la and lb, one may notice that preferential sputtering of the heavy con­
stituent may be predicted from fig. la, and the light one from fig. lb. In case 
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of W03, our preference of the choice of potential constants is such as to 
predict preferential sputtering of W. This preference is, however, not so 
strong as the corresponding one with the uranium carbide system.

Systematic investigations of the sputtering of oxides10) revealed preferen­
tial sputtering of oxygen in many cases. Consistently, oxygen happened to be 
the lighter constituent. The analysis indicated a contribution of chemical and 
local-heating effects. From the point of view of the present investigation, it 
would be of considerable interest to have similar experimental results taken 
at low bombardment doses.
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Appendix A

We want to show that the determinant of the system of equations (12) 
has no zero for s > 1. First, it follows from eqs. (13) and (14) that ßtk > 0 
and sue > 1 for s > 1.

Now, let ß = (ßik) be an arbitrary nXn matrix with positive elements, 
ßik > 0, and let e^, where i, k = 1, . . ., n be a set of n2 arbitrary elements. 
We define another nXn matrix A = (Aik) by

Atk = Öik'^ßijSl]

and will now prove the following theorem for the determinant

det (A - ß) =

ßii(sn - 1) + /512e12 + . . . + ßin^m ... - ßin
— ^21 ^22(®22 ~ 1) + ^21e21 + • • • + e2« ... — ß2n

ni ßn2 • • ■ ßnn(Xnn ~ 1 + ßniXni + • • • X ßn n-i^n n-\
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If all elements Eik > 1 then det (Zl - ß) > 0.
The theorem is proved by induction, increasing the dimension of the 

matrix from n—1 to n.

i) The case n = 1 is trivial: det(Zl — ß) = ßn(eii “ 1)

Since ßxl > 0 and en > 1, de/(Zl - /3) > 0.

ii) The general step n — 1 -> n: We first note that if all = 1 then 
det(A - /?) = 0, because the sum of the elements in each row is zero. It is, 
therefore, sufficient to show that for £/*  > 1, det(A - ß) is a strictly increasing 
function of all the £/*,  or:

d
delk

ßm

0

— ß%n

- ßik

ßn2

For reasons of symmetry it is sufficient to consider the case i = 1. We get 
by differentation :

The last determinant is a (n-1) X (n-1) determinant, but in a form not 
suited for direct induction. However, the matrix can be brought into a 
suitable form by defining new quantities eh and ßa so that for i = 2, . . ., n

d
-----det(A - /?) > 0 for all Efk’ > 1. 
d£ik
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1) ßii(jZii — 1) + ßiißii — ßii(Sii ~ 1)
2) ßii > 0
3) £ü > 1

which is evidently possible. For i + k we define Eik = and ßtk = ßik- Then

~ ßzn

+ ßnn-i £nn-i

Here ßlk > 0 and the determinant is positive too, since it is a (n-1) X (n-1)- 
determinant of the type considered.

This proves the theorem.

Appendix B: Effect of Atomic Binding

We want to indicate briefly the effect of atomic binding on energy dissipa­
tion. Some results of similar calculations for monatomic targets have been 
reported previously1’ 27> 28), yet without derivation. A detailed discussion 
will be given in a forthcoming paper35), but the main steps - for a polya­
tomic medium —will be sketched here.

We only consider the slowing-down density Gij. If we assume that an 
atom of type i loses a binding energy Vi upon recoiling from its rest position, 
the only necessary change in eq. (2a) is replacement of the recoil term 
Gkj(T, Eq) by

- Vk,Eo), (B 1)

while the boundary condition (4) remains unchanged.
In the evaluation for power scattering, eq. (10), the Laplace transforma­

tion is carried out conveniently by means of expansion in powers of Vk/E0. 
Then, the recoil term Gkj(s) in eq. (12) is replaced by the expression

2 (B2)
v = o

The resulting system of equations can be solved by perturbation expansion,
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6^(0 = £Gg>(s), (B3)

V

where G$(s) contains v factors of the set (V\, V2, . . .). The zero-order 
term G^(s) is identical with the one calculated in sect. 3, and the first-order 
term follows from the equations

(s)2ßu(s)eik(s) - 2 /M-0 Gÿ (s) =
k k

- - (s + i)2(u/-E1,)fee)ög,(S + i).

k

Only the inhomogeneity on the right-hand side differs from eq. (12). In parti­
cular, the highest poles of Gy\s) are determined by the zeros of the deter­
minant D(s), just as those of G$Xs). The asymptotic solution Gff(E,E0) 
for E»E0 is, therefore, proportional to E, and the same is true for all 
higher orders Gy (E, Eo). Note especially that the term on the right-hand 
side of (B4) is regular for s > mt. Then, with the notations of sect. 4, the 
asymptotic solutions (s = 1) of (B 4) in the binary case can be written in 
the form

G'A’/G'ff-ß'A’/G'»’-

~ - (2/D<«(2)) + £12( 1 ))(VJE.) x

[(fe(2) - l)fe(2) + I8S1(2)^,(2)] + (/Sla(l)/ftj(l)) x 

(fti(l) + ft2(l))(V2/E0)fti(2)},

where _D(2>(s), £a(s), and ßtk(s) arc defined in eqs. (13a, b) and (22a).
In case of a monatomic medium (i.e. either for = .W2 and arbitrary 

«i or for oq = 1 and arbitrary M2/Mx), eq. (B5) reduces to the previously 
quoted result27’ 28)

Gff/d? ~ - (2 - m>) U/Eo for M, = M2 (B 6)

as it should be.
We have evaluated eq. (B5) numerically for the tungsten-oxygen system. 

We write (B5) in the form

Gff/Gg’-G^/G™- - B,(n/E0) - /(2(V2/EO) (B 7)

and plot Rr and R2 in fig. 8a for oxygen and in fig. 8b for tungsten. It is seen 
that R2 is vanishingly small in both cases. Rr has its greatest value for the 
pure materials and drops off rapidly with increasing concentration of the 
alloyed impurity. This is particularly so in case of fig. 8b.

(B 4)
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Fig. 8. First-order corrections to the slowing-down density due to atomic binding, defined in 
eq. (B7).

Fig. 8a. Oxygen in IV-0 compound (Index (1) refers to oxygen). Note the different scales for 
7?! and R2.

Fig. 8b. Tungsten in 1V-0 compound (Index (1) refers to tungsten). Note the different scales for 
jRx and R2.

1.0 0.5 0.0 a2

Fig. 8c. Equal-mass compound. Same scale for R± and R2.
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Figs. 8a and 8b indicate that the dominating contribution to eq. (B7) is 
due to the fact that moving atoms cannot be observed at their initial recoil 
energy, but at most at the recoil energy minus their respective binding energy. 
The loss of energy during recoiling of former generations of atoms in the 
cascade appears to be of minor significance for the slowing-down density.

Fig. 8c shows a similar graph for an equal-mass compound. Because of 
the possibility of complete exchange of energy between collision partners 1 
and 2, the coefficient R2 in (B7) becomes significant, though still smaller 
than Rv

Figs. 8a-c are representative for most situations of practical interest. 
We conclude that the influence of atomic binding on the slowing-down density 
is essential only for nearly pure materials in case of very different masses, and 
roughly independent of concentration in case of nearly equal masses. The 
correction cannot exceed that of the pure material, except when the binding 
energies themselves undergo substantia] changes due to the presence of the 
alloyed material.

It follows from (B7) that the influence of atomic binding is most pro­
nounced near threshold (£'0~V1). In radiation damage one often meets a 
situation where so that the correction is unappreciable at all
energies of practical interest. Therefore, we only evaluated the correction in 
case of the slowing-down density. In sputtering, the threshold energy of 
interest is the surface binding energy, which may well be comparable to 
Vj, so that a correction may be necessary in the lowest parts of the spectrum. 
Figs. 8a, b indicate that for the W-0 system at intermediate concentrations, 
the correction is larger for oxygen than for tungsten. Since the sign is negative 
(eq. B7), the corrections tend to move the deviation from stoichiometric 
behaviour towards dominance of the heavy species in tin1 particle flux.
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1. Introduction

Even though the penetration of atomic particles into matter now has 
been studied for about half a century, further experimental investigations 
are strongly needed in the low energy part of the range in which the energy 
loss due to the clastic scattering equals or exceeds the inelastic energy losses.

The stopping due to the elastic scattering (in most literature called the 
nuclear stopping) was discussed by Bohr1 in 1948. The Bohr theory was 
further developed by Lindhard and Scharff2 and by Lindhard, Scharff 
and Schiøtt3 (in the following referred to as L.S.S.). They derived a univer­
sal curve for the nuclear stopping power by using the Thomas-Fermi model 
of the atom to determine the screening effect from the electrons on the nuclear 
Coulomb interaction potential between the colliding particles. Also using the 
Thomas-Fermi model Lindhard and Scharff2 developed a theory for the 
inelastic losses (the electronic stopping power) and found these to be propor­
tional to the particle velocity, over the energy range in which the nuclear 
stopping is of importance.

In figure 1 is shown the theoretical universal curve for the nuclear 
stopping power (de/dg^n together with a typical electronic stopping power 
curve (deldg)e and the resulting total stopping power curve (de/dg^t. The 
particle energy E and the range R are replaced by the dimensionless para­
meters £ and g as defined in L.S.S.3.

Systematic measurements of the pure electronic stopping power at 
higher e-values, Ormrod and Duckworth4, Ormrod et al.5, Hvelplund6 
and Högberg7, have shown rather strong oscillations around the theoreti­
cally predicted values due to atomic shell effects.

An experimental test of the theory of the nuclear stopping in the energy 
range below the crossing of the nuclear- and electronic stopping power curves, 
i.e. £ < 4, is desirable, but until now very few such measurements exist. 
In 1963, with a gas cell with two small openings followed by an electrostatic 
energy analyser, very heavy particles with £-values from 0.01 to 1 was studied 

1*
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Fig. 1. Theoretical stopping power curves from Lindhard, Scharff and Schiøtt3.

by Sidenius8. With time-of-flight method and a-recoils the stopping in thin 
solid films was measured by Zaiin9 in 1963, Marx10 in 1966, Poole et al.11 
in 1967 and Hancock et al.12 in 1969; the method is very limited in particle- 
and energy range, but allows measurements with e-values about 0.1. In 
1971 the stopping of 3 < ZY < 18 ions with 4.5 to 46 keV energy (e-values 
from 0.7 to 21) was measured in carbon foils by Högberg2 * * * * 7- 13.

2. Definition and Analysis of Stopping Parameters

The different parameters observable for a beam of particles penetrating 
a stopping layer will first be summarized. As slopping media only gases and 
amorphous solids are considered. The stopping layer shown in figure 2 is 
homogeneous matter with the molecular density and plane parallel
surfaces separated by the distance d. Ideally the matter consists only of
atoms of one element with the atomic number Z2 and the mass number .V2,
but in practice compound molecules must also be considered.

The incident particle beam is considered to be ideal, i.e. a parallel, 
monoenergetic, narrow beam entering the stopping medium perpendicular 
to the surface. The incoming particles have atomic number Zx, mass number

However, in all these measurements a narrow acceptance angle of the 
detection system was used. The measured stopping power is therefore what 
we shall call the stopping power in the forward direction, which in most cases 
dillers from the total mean stopping power. It is therefore of importance to 
detine as clearly as possible the various stopping data found from theory 
and experiment and to discuss the obtainable accuracy before the description 
of the present experiment.
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Afj, and energy E10, their number per unit time is 7V10, and their charge 
state is m10.

The primary particles emerging from the stopping layer are well defined 
only in element and mass, Zx and Mlt and the number of particles leaving 
per unit time N12, whereas the rest of the parameters are now described by 
distribution functions. In many cases these are non-Gaussian and non-sym- 
metric, as shown in figure 2.

From the energy distribution n(E'12) one may derive, the mean energy 
Ë12, the most probable energy E12, and one or more parameters defining 
the shape of the distribution.

The multiple scattering, which is directly correlated to the nuclear 
stopping cross section, produces two phenomena: an angular deflection 
distribution nÇvj) and a radial displacement distribution n(rx) in the emer­
ging primary particles. As a rule, the radial displacement is measurable only 
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when lhe stopping element is a gas, whereas the angular deflection can be 
rather easily measured for a solid stopping element, but only with difficulty 
when the stopping element is gaseous.

Important information is contained in the relative abundances of the 
charges, nll2 and excited states, nxi2 of the emerging primary particles. The 
study of these effects using beam foil spectroscopy14 and beam gas spec­
troscopy14 has become a growing field in the last few years.

Not shown in figure 2 is the secondary particle emission; from both the 
front and rear surfaces recoil target atoms and electrons will be ejected. 
These will be widely distributed in energy, angle, charge state, relative 
abundance, etc.

Important information about lhe slowing down process is contained in 
the ionization and excitation of the target atoms, effects which normally are 
observable only in a gaseous stopping element. For the present experimental 
technicpie the number of ionpairs created in the stopping layer per penetrating 
particle, dNi, as well as the total number of ionpairs Nt created along the 
whole range of the particle are especially important parameters.

Figure 2 also illustrates the definition of lhe different stopping lengths. 
dR is the actual path length, dRv is the vector length defined as the linear 
distance between lhe entrance- and exit points of the particles, and dRp is 
the projected length as measured in lhe initial direction. For a plane parellcl 
layer dRp is lhe same as the thickness d.

In the L.S.S. theory3 lhe stopping power is defined as lhe average energy 
loss dE per unit path length dR.

(dEldR)th = N2S = N2 J 7W(T) (1)

where N2 is the number of scattering centers per unit volume and S is the 
stopping cross section per scattering center. This is not a real cross section, 
but is the average energy loss per scattering center. d(j(T) is the differential 
cross section for the energy transfer 7’, which may be both elastic and in­
elastic. Normally it is impossible to observe the path length dR; therefore, to 
define the experimental stopping power, either dRv or dRp will have to be 
used. dRp is the only stopping length, which can be measured for both a solid 
and a gaseous stopping layer. Hence the fundamental experimental stopping 
power is defined as
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This is the total mean stopping power, i.e. the energy analysis shall 
include all emerging primary particles, independent of their angle, radial 
displacement and charge state*.

If the energy analysis excludes some of the emerging primary particles, 
as hitherto always has been the case, a fractional mean stopping power is 
obtained

The most common fractionization is the exclusion in the energy analysis 
of all charge states except singly charged ions. If the stopping layer is much 
thicker than is needed to ensure charge equilibrium the charge fractionization 
should not be expected to introduce any significant error, even though 
Allisont5 has shown that there is a pronounced difference in the electronic 
stopping of neutral, singly or doubly charged particles.

In the case of a solid stopping layer a rather common fractionization is 
the exclusion of emerging particles with an angular deflection larger than a 
normally very small angle 0ac determined by the acceptance angle of the 
energy analyser.

For a gaseous stopping layer the use of a small outlet opening excludes 
emerging particles with a radial displacement larger than the opening radius 
r0; often a further exclusion follows due to the limited acceptance angle of 
the energy analyser. Here, it may be worthwhile to note that when M1lM2 is 
close to unity about 30 °/0 of the nuclear stopping is caused by collisions with 
a deflection of the primary particle larger than 45 degrees!

If the measurement is performed in the forward direction with a small 
acceptance angle the measured energy loss is caused mostly by the electronic 
stopping. This has been utilized in measurements of the pure electronic 
stopping4- 5> 6> 7. However, for a test of the nuclear stopping theory it is an 
absolute requirement that the energy analysis incorporates all emerging 
primary particles. Only for very heavy particles stopped in a light gas 

> 100) and a thick stopping layer is the fractionization effect negli­
gible8. Högberg7’ 13 has studied the influence of the target thickness and 
used it to determine what he calls the saturation value of the nuclear stopping, 
but it still is the stopping in the forward direction and all large angle scattered 
particles are excluded.

* More correctly, the last term should be 
completely in the layer.

—— ^E12> since particles may be stopped 
Nio
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Since dRv is more closely related to the path length dR than is dRp- a 
better test of the theoretically predicted stopping power would be obtained by 
a measurement of the total mean vector stopping power:

ÇdE ldR)tmv dEmv
dRv

(4)

(4) is the same as (2) except that dRv replaces dRp, i.e. instead of a plane 
exit surface a sperical surface with the radius dRv is used.

In practice such measurements are possible only in a gas and only by 
using an outlet opening, which can be rotated around the inlet opening, thus 
permitting integration over all angles. A few unpublished measurements of 
this kind using a slight modification of the equipment described in ref.8, con­
firmed the previously measured stopping power data for ^Ga in II2 gas 
except for a correction factor of 1.1. However, the measurements still suffered 
from a limited acceptance angle of the energy analyser.

A search for an energy analyser for low energy heavy particles with a 
fractionization effect as small as possible was initiated; the resulting heavy 
ion detector is described in section 4. It permits measurements with very low 
energy particles and it has solved nearly all problems connected with the 
fractionization effects. It is, however, sensitive also to the recoils and their 
influence is therefore discussed in the following section.

3. The Recoil Effect

For Mj = M2 a maximum energy (Tw) equal to the total energy Er of 
the primary particle may be transferred to the secondary particle in a single 
collision. Since secondary and primary particles are indistinguishable, a 
fundamental and serious experimental problem is created. As a result of the 
rather slow variation of Tm with the problem is present for a wide
Mi/Mg range.

Theoretically, it will be so, that if a very thin stopping layer with appro­
ximately single collision condition is placed in front of a detector with a 2 
acceptance angle and the electronic stopping is negligible, all the recoil 
energy will be transferred to the detector. If the detector then linearly sums 
the energies of the primary particle and its accompanying recoil particles, 
the result will be a 100 °/0 error in the measurement of the elastic energy loss!



Nr. 4 9

This is, however, for an ideal linear detector which gives a voltage signal 
proportional to the particle energy Ep. Fortunately the detector used in the 
present experiment is not ideal and the signal is a nonlinear function of the 
heavy particle energy. This, as will be shown, helps to decrease the error of 
100 °/0 to less than 33 °/0.

The detector is a low pressure proportional counter which gives a signal 
proportional to the number Ni of ion pairs formed in it by the particle. Nt, 
however, is not proportional to the energy Ep of the particle, but (see part 7 
and figures 6 and 7) empirically Nt was found to be approximately

(5)

Wt is the average energy needed to create an ion pair, which for low particle 
energy will be

(6)

and hence

(7)

The detector is followed by an electronic analog device, which makes 
the output Ud proportional to the particle energy

Ci -]/ 77 Ei = ktE” (8)
y

At is the total gain of the system and k2, kw, kd are constants.
Suppose = M2 and hence Tm = Ev With no stopping layer the signal 

Ud0 is
UdQ = kdE10. (9)

With a stopping layer inserted and assuming the recoil atoms not to 
reach the detector, the signal corresponding to an energy transfer T is

= 1/y-(F,,-ry - *<,(E 10-r) (10)
f Kw

whereas if the recoil atom reaches the detector, the signal is, kw here being 
the same for particle and recoil atoms:
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- ^(E^-zry + T*.  (ii>

The difference between Ua0 and Udx is correctly proportional to the 
energy loss T

Ul(-O = Edi = kdl (12)

whereas the difference between L^o and t\z2 is

ua(T) - Ud0 - Ui2 - kd(Et<, - l^o + 27’2-2E107') (13)

which may be written, introducing the ratio ry:

T 
rT = E~

7310
(14)

u2(T,rr) = «iCO/Vt)- (15)

The function /(ry) is shown in figure 3 together with the relative error

Zlu(7,)/ui(7’) =
u1(T)2Lu2(T)

^i(ï’) (16)

As seen the relative error is nearly proportional to T.
Next we want to find the average energy loss, dEn, and its error. We use 

the simple power law cross section from L.S.S.3 with s = 2, and obtain, 
introducing the ratio rr,

C2
dff(rT) = ------^~2drT (17>

10 rT

where the constant C2 is equal to half the value of the nuclear stopping cross 
section, which is independent of energy.

The average voltage signal ûj for the correct measurement will be

C2
- drT =kadEn. (18)
iorr

According to fig. 3 u2(T, rr) may be approximated by u2 = kdE10rr 
(1 - ry), and the average signal obtained, if recoils reach the detector, is
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Fig. 3. The recoil influence in single collision events plotted as a function of r™ = T/E10. The 
function f(rT) = u2/u1 *s the ratio between the recoil influenced signal and the correct signal and 

z1u(T)/u1(T) is the relative error.

f1 C
il2 = kadRN2 E10rT(l -rT)—^r2drT = jkadEn. (19) 

J 0 E10r'T

When M 1j M 2 deviates from unity, the difference üj-üa is smaller and 
thus the relative error in the energy loss measurement never exceeds 33 °/0.

This is for an assumed single collision condition, where the energy 
distribution of the recoils is proportional to rr3/2 but in an actual stopping 
layer with multiple collision condition the energy distribution is expected to 
be proportional to rÿ2 as has for instance been found for sputtered particles16. 
With such a distribution the relative error is reduced to less than 20 °/0 and 
the angular scattering and inelastic losses will further reduce this value.

This was demonstrated by a calculation of the fraction of the total 
elastic energy loss, which reaches the detector volume as recoil energy. As 
above, the power law cross section with s = 2 and = M2 was used, and it 
was assumed that the stopping consists of a part independent of energy, 
called the homogenenous part, caused by inelastic stopping and small 
angle collisions and a part caused by large angle collisions.

The results are shown in figure 4. The thickness AR of the stopping 
layer was varied, and the ratio rE between the homogeneous energy loss in 
AR and the primary particle energy Ex, is used as a parameter. dEn is the
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Fig. 4. Fraction of the elastic energy loss transported by recoils into the detector from dx, 
(dEr/dEn), and from AR, (AE r/AEn) and the relative error, dUr/dUn, on the detector signal 
plotted as functions of the parameter rp (see text). A single event is shown very schematically.

total elastic energy loss in a thin layer dx next to the entrance surface. dEr is 
the part of dEn which is transported through the stopping layer AR to the 
detector. AEr and AEn corresponds to the whole stopping layer.

Especially dEr/dEn is strongly affected by the total stopping layer 
thickness. This leads to the conclusion that the best method in stopping power 
measurements is to add stopping layers in increments of dx, adjust the 
primary particle energy for each step with an energy increment dE so that 
the average detector signal stays constant and in this way obtain a dE/dx 
value. Hereby it is obtained, that in the layer between the dx layer and the 
detector volume the particle energy and the recoil balance is nearly unchanged 
and the error is caused only by the recoils from dx and hence, as seen from 
figure 4, decreases rapidly with increasing thickness of the total stopping 
layer.

If the reduction effect of the detector nonliniarity is also taken into con­
sideration, the resulting relative error on the detector signal, dUrldUn, shown 
in figure 4 is obtained. Thus the error is very small, except for the first few 
steps in a measurement.
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Fig. 5. The mechanical design of the detector system.

4. Experimental Apparatus

The fundamental problem of obtaining full transmission from the 
stopping layer to the energy analyser is solved by using a low pressure pro­
portional counter as the energy detector and through the use of the same gas 
in the stopping layer and in the detector thus permitting the use of a high 
transmission grid between them.

In figure 5 is shown a somewhat simplified drawing of the system. The 
ion beam which is precollimated by a 2 mm diameter aperture enters the 
gas through a 0.05 mm diameter opening in a 0.05 mm thick stainless 
steel foil.

When a gas target is used, the beam inlet opening presents a problem, 
because of the difficulty in defining the exact boundary between the vacuum 
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and the gas. With the present small opening, the vacuum in the accelerator 
is hardly affected. The gas molecules are therefore streaming out with a mean 
free path of the order of many centimeters and a density which drops off 
with distance so fast that the addition to the gas layer caused by the out- 
streaming gas, when converted to the pressure inside the chamber, is smaller 
than the diameter of the opening, and therefore negligible.

Since the ion beam outside the opening easily contains up to IO6 times 
more particles than the number, which enters the chamber (normally about 
103 per second), the scattering in the outstreaming gas is not negligible. An 
antiscatter aperture, shown in fig. 5 in larger scale, reduces the number of 
scattered primary particles and recoil atoms, which otherwise would give 
rise to a low energy background in the detector, to a nearly nondetectable 
level.

The beam inlet opening is placed on a cylinder movable along the axial 
direction, so that the distance d to the grid can be varied, from zero to 40 mm. 
d is measured with a micrometer to an accuracy of ± 0.02 mm. By means of 
a linear potentiometer mechanically connected to the cylinder an electric 
signal indicating the position is obtained. The cylinder is insulated to allow 
the use of a bias voltage.

The central wire in the detector is a 0.11 mm diameter VV-wire; the outer 
detector walls arc 80 mm apart and have a length of 200 mm. By means of 
an «-source with a 3° collimation, the electron collection efficiency and the 
gas amplification were tested and found to be constant to better than 1 °/0 
over the whole volume where ion pairs are formed by the primary particles.

The entrance opening to the detector has a diameter of 50 mm and is 
covered by a grid, formed by 0.05 mm diameter Ay-wires spaced 0.5 mm.

To minimize disturbing effects from ionization of impurity atoms by 
metastable states of the detector gas atoms (Penning effect) the highest purity 
of the gas is essential. Double O-ring seals were used everywhere in the 
apparatus and in the gas inlet system. The volume between any pair of 
O-rings was connected to high vacuum and thus no impurities could leak 
into the gas, which was taken from high pressure bottles with an impurity 
content less than 0.01 °/0. The gas pressure, which ranged from 3 to 15 Torr, 
is stabilized to belter than 1 part in 103 over periods of several hours by a 
special oilmanometer system17 with both optical and electrical read-out of 
the oil level, and an electronically controlled leak valve18. The system is 
held at 22° C ± 0°.l C.

The detector electronic system is standard equipment for pulsehandling 
except for two special modules. One is the inlet control box, which ensures 
that there is the same field strenght but in opposite directions on the two
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Fig. 6. Number of ion pairs formed in Methane by five different particles plotted as functions 
of the particle energy.

sides of the entrance grid of the detector for all positions of the inlet system, 
wherefore electrons formed outside the detector volume are not collected on 
the detector wire.

A 512 channel pulse height analyser is used to analyse the pulse height 
distributions. But since the energy distribution often is unsymmetric, and 
since a quick determination of the mean energy is essential, a special elec­
tronic unit, the C.M.C.19, was designed and connected to the pulse height 
analyser. It permits a calculation of the center of mass channel number to 
be made in less than 10 seconds and displayed on a scaler with an accuracy 
of 0.1 channel.

5. The Energy Detector

With CH4 as the detector gas the number of ion pairs Ni as a function of 
the particle energy E was investigated in the energy range 10—120 keV for 
particles with < 22 by Macdonald and Sidenius20. Figure 6 shows some 
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typical examples of Ni = / (E) curves. Figure 7 gives the Ni dependency on 
Z1 for fixed energies and, as seen, the oscillations found in the measurements 
of the pure electronic stopping4- 5> 6- 7 also show up here.

6. Measuring Methods and Procedure

Two methods of stopping measurements are possible. In the variable 
pulse height method (V.P.II.) the incident particle energy E10 is kept con­
stant and the shift in the average energy E12 of the emerging particles is 
observed as a function of the stopping layer thickness d. In the constant 
pulse height method (C.P.H.) the incident particle energy E10 is adjusted as a 
function of the stopping layer d so that the average energy E12 of the emerging 
particles is kept constant.

In principle the two methods should yield the same results, but they 
differ in their sensitivity to the multiple scattering effects, the V.P.II. method 
being tire more sensitive. Furthermore, the data analysis is much more 
difficult for the V.P.H. method because the pulse height data must be con­
verted into energy data via the calibration curve; this introduces unnecessary 
errors. The V.P.II. method was therefore disregarded except for a few

This complex relation between Ni, E, Zx, which itself gives important 
information about the slowing down of low energy heavy particles, involves 
that, for the proper use, the detector must be calibrated for each particle-gas 
combination.

As seen in figure 7, the number of ion pairs formed by the very low 
energy heavy particles is of the order of 10 to 100 and consequently the 
resolution of the detector is primarily determined by the statistical fluctua­
tions in these low numbers. At higher energies, the fluctuations in the different 
energy loss processes will set the limit in resolution. The best resolution 
obtained has been about 5 °/0 F.W.H.M. for 50 keV H+ in CH4.

The electronic noise from the preamplifier is almost without influence on 
the resolution, but sets the limit for the lowest energy, which can be detected. 
To allow the detector to work with the lowest gas amplification, which gives 
the most stable condition, a low noise preamplifier with a F.W.H.M. noise 
of about 250 ion pairs is used. With a gas amplification of about 200 the pulse 
height distributions from a mean value of 10 primary ion pairs are completely 
resolved from the noise.

With CH4 as detector gas the gain stability is better than 0.2 °/0 for several 
hours, whereas other gases require the use of a gain stabilizer to give the 
same stability.
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Fig. 7. Number of ion pairs formed in Methane plotted as functions of the atomic number Zx of 
the incoming particle and with the energy as parameter.

measurements with protons for which the calibration curve is linear and for 
which the V.P.H. method can be used to a somewhat lower energy than can 
the C.P.H. method.

The particles are produced by the reconstructed, 30 year old Copen­
hagen isotope separator21; now used as a modern universal range ion accele­
rator and separator (URIAS)22. The ions are mass analysed at a fixed energy 
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and afterwards either retarded or post accelerated. Thereby it is possible to 
obtain singly charged particles of continuously variable energy from less 
than 1 keV up to 60 keV. For higher energies doubly or triply charged ions 
are used.

The ions are produced in a high temperature universal ion source23 
with an energy spread of less than than one electron volt. The energy of the 
ions is measured with a digital voltmeter to an accuracy of ± 0.1 °/0.

After a suitable target gas pressure is set with d = 0, the particle energy 
is set to the lowest value Elo, and the center of mass value Ncmq for the im­
pulse height distribution is found using the C.M.C. The inlet system is then 
displaced one millimeter and the particle energy adjusted until Ncm-l read 
approximately the same as Ncmq, and both d, Eir and Ncmi are recorded.

This procedure is repeated for increasing distances until the E12 distri­
bution becomes so broad that the low energy tail extends down to the noise. 
d is then turned back to zero and the stability of the system checked through 
the measurement of Ncm0 at energy E10.

A new value of E10 is then chosen, well inside the energy range covered 
in the first run, and the measurements are repeated.

The E1 data are corrected for the small difference between Ncm0 
and NcMn

E'ln- E1u + eJi-^\ (20)

\ ÏVCÆfO/

the dEjdx for each 1 mm step increment is found as

dE/dx = E1(n±V ~Eln- (21)
1 dx J

and the data are normalized for different pressures etc. by converting them 
into the molecular stopping cross section Sx, the average energy loss per 
stopping molecule.

The statistical fluctuations in Sx from these small values of dx and dE 
is normally rather large, up to ± 10 °/0, but they are useful for an estimate of 
the quality of the measurements. Another test of the quality of the measure­
ments is obtained by the requirement that the various (E^, d) curves corres­
ponding to different Elo starting values must accurately fit together to form 
a smooth curve. Figure 8 shows, as an example, curves for Nitrogen stopped 
in Methane. Not all the single curves used to obtain the final curve are shown. 
The points from the different measurements are scattered less than 1 % in the
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Fig. 8. Primary energy, E{, plotted as function of distance, d, for constant mean energy after,the 
stopping layer. The curves corresponding to different starting values (dotted lines) are fitted 

together to form the final energy-range curve (full line) for Nitrogen stopped in Methane.

2*
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10 20 KeV 30
Fig. 9. Low energy part of the stopping cross section curve for Nitrogen stopped in Methane. 
Points are from the data analysis described in the text, crosses are from a differentiation of the 

final curve in figure 8.

low energy range and less than 1/2°/o in the high energy range. Points from 
two sets of measurements with pressures of 3.20 and 6.40 Torr are shown.

Figure 9 shows the low energy part of the stopping cross section curve 
for Nitrogen slowed down in CH4. A rather narrow structure, at approxima­
tely 10 keV, is seen. The points are from the data analysis described, but 
using values of dx from 3 to 6 mm, and the average spread around the 
smooth curve is about ±2.5 °/0. As a comparison a differentiation of the 
final energy-range curve in figure 8 yielded results shown as circled crosses; 
there is satisfactory agreement between the results found by the two different 
analysing methods.

7. Systematic and Statistical Errors

In the C.P.H. method a calibration curve is, in principle, not needed, 
but due to the nonlinear pulse height-energy relation a systematic error is 
introduced. With increasing stopping layer thickness the energy distribution 
becomes wider due to the straggling and if two distribution curves having the 
same center of mass bid different widths are each folded with the same non- 
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linear function the resulting curves will not have the same center of mass. 
Therefore to the main pulse height amplifier was added a variable nonlinear 
stage, which served to straighten the pulse height-energy curve to a linear 
curve without any loss in the overall stability.

As previously shown, a systematic error arises from recoils reaching the 
main detector. However, the detector reduction effect and the use of the 
C.P.H. method reduce this error to less than 5 to 10 °/0 of the elastic stopping 
except for the first one or two mm stopping layer.

Any possible systematic error will be strongly dependent on the stopping 
layer thickness. The best estimate of their influence is obtained by measure­
ments of dE/dR data for the same mean energy but measured with different 
layer thicknesses and at different distances from the grid.

As shown in figure 8 and 9, except for the first one or two mm of stopping 
layer such differences in stopping data were found to be smaller than the 
statistical uncertainties. For the present measurements in CH4, it is estimated 
that in the region from 3 to 10 keV the systematic error is less than -5 to 
+ 15 °/0, from 10 to 30 keV less than — 3 to +10 °/0, and from 30 up to 120 
keV less than - 2 to +4 °/0.

The statistical fluctuation in the mean value of the E12 distribution 
varies from ±0.5 °/0 at low energies to ±0.2 °/0 at high energies. Since dE 
is determined as the difference between two nearly equal numbers, (dE is 
normally less than 10 °/0 of E12 except at low energies) the fluctuation in dE 
and therefore in the stopping power ranges from ±2.5 % to ±7 °/0 depending 
on the magnitude of dE and E12.

All the present stopping cross section curves are results of many repeated 
measurements carried out with different pressures.

8. Results and Discussion

There are several reasons for choosing the most simple hydrocarbon, 
CH4, as stopping gas. Firstly it is found to give optimum stability of the de­
tector, secondly the content of the light H-atoms decreases the scattering and 
recoil effects, and finally the slowing-down of particles in hydrocarbons has 
great interest for the application of the stopping data in health physics and 
radiation damage theory, J. A. Dennis24* 25.

As particles the first ten elements in the periodic system were used. The 
energy ranged from 0.6 keV up to 110 keV.

The data obtained are the total mean stopping power for the projected 
path given by formula (2) and they are not directly comparable with the 
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theory, which refers to the mean stopping along the actual path, as given by 
formula (1). Since no theoretical calculation of the total mean slopping for 
the projected path is available, no attempt was made to correct neither the 
experimental nor the theoretical data. But a correction of the theoretical 
curve would in all cases have resulted in an increase in the stopping cross 
section especially at low energy. Still, the theoretical curves, calculated from 
L.S.S.3, will be of interest for comparison and they are therefore in all cases 
shown together with the experimental results.

For protons the stopping cross section curve from 0.6 up to 60 keV is 
shown in ligure 10, together with other experimental results and the theoreti­
cal curve which is only valid up to about 15 keV. The agreement between the 
present results and those of Reynolds el al.26 and Park and Zimmerman27 
is excellent, whereas a systematic disagreement exists with the measurements 
of Hughes28. The explanation seems to be that Hughes has used an ion 
source giving a high output of Hj instead of H+ and he has not used an ana­
lysing magnet. Much better agreement would be obtained if his energy scale 
was divided by two!

The stopping cross section for Helium ions was measured in the energy 
interval from 3 to 60 keV and is shown in figure 10. The theoretical curves 
for Helium and for the heavier particles to be discussed later were calculated 
as the sum of the nuclear and electronic stopping cross sections of the Carbon 
atom and the four Hydrogen atoms.

St = SnC + SeC + 4S«h + 4SeH- (22)

The agreement between the present results and the theory and the results 
of J. T. Park29 could have been belter, but at least the slope is about the 
same. Park has used a very small analyser acceptance angle and this may 
be the reason for the discrepancy between the two experimental results.

At low energies, two interesting effects are observed. One is the bump in 
the curve at about 10 keV which seems to indicate some kind of resonance 
effect in the losses. Secondly, in disagreement with theory, the experimental 
curve does not level out below 5 keV.

That the latter is not a result of a systematic error is proved by the fact 
that no such effect is found for the two Lithium isotopes, as shown in figure 1 1. 
The agreement with the point of Teplova et al.30 is reasonably good. The 
magnitudes of the experimental and theoretical values differ strongly, but 
this may be explained by difference in the electronic slopping. More impor­
tant, the general behaviour of the two sets of curves is the same; note especi­
ally the crossing caused by the isotope effect.
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Fig. 10. Stopping cross sections for Hydrogen and Helium stopped in Methane. The curves 
marked 1 give the results of the present experimental investigations whereas 2 are the theoretical 
estimates. Other experimental results are: 3, Reynolds et al.26, 4, Park and Zimmermann27, 

5, S. Hughes28, and 6, J. T. Park29.

Results for particles ranging from Beryllium to Neon are shown in 
figure 12 and 13. For all the particles the experimental stopping cross section 
at low energy is much lower than the theoretically predicted. A most striking 
feature is the pronounced structure in the curves for Nitrogen and for Car­
bon. If this structure is caused by the nuclear stopping one should expect a 
similar structure to appear for the neighbouring elements more pronounced 
than is the case; therefore the electronic stopping must be responsible for the 
structure. The broader structure of the Fluorine and the Neon curves rather 
seems to belong to the same type as the Helium curve.
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Fig. 11. Stopping cross sections for the two Lithium isotopes stopped in Methane. Curve set 1 
gives the results of the present experiments whereas curve set 2 represents the theory. Point 3 

is the experimental result by Teplova et al.30.

The agreement with the data of Teplova et al. for Boron could have 
been better, whereas for Nitrogen there is surprisingly good agreement with 
the data of Hughes, though these might have been expected, like for hydro­
gen, to be in error due to a dominating beam of doubly charged ions.

In figure 14 all the experimental results arc shown together.

9. Deduction of the Electronic Stopping Cross Section

In the present investigations experimental values for the total stopping 
cross section were obtained. If we take the values for the various particles 
at a selected common velocity and subtract the corresponding theoretical 
values from L.S.S.3 of the nuclear stopping cross section, values for the elec­
tronic stopping cross section Se may be obtained.

The resulting values of Se for particles with the velocity v = 0.5 v0 = 
1.09-IO8 cm s_I are plotted in figure 15 together with the theoretical estimates 
of Se by L.S.S.3. Contrary to the smooth shape of the latter, the experimental 
values exhibit an oscillatory variation, for which the magnitudes of the
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Fig. 12. Stopping cross sections for Berylium, Boron, Carbon and Nitrogen stopped in Methane. 
The curves marked 1 give the results of the present experiments, 2, are the theoretical estimates. 

Other experimental results are: 3, Teplova et al.30 and 4, S. Hughes28.
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Fig. 13. Stopping cross sections for Oxygen, Fluorine and Neon stopped in Methane. The curves 
marked 1 give the results of the present experiments and 2 are the theoretical estimates.
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Fig. 14. Experimental total mean stopping cross sections for the first ten elements stopped in 
Methane.

maxima and minima are in good agreement with measurements in other 
gases by Hvelplund6.

At the selected velocity the theoretical nuclear stopping ranges, for the 
light particles from 10 °/0 of the total experimental stopping up to 50 °/0 for 
the heavy particles. Since the nuclear stopping seems to be overestimated by 
the theory (se next chapter) the deduced values for Se are probably too low 
especially for the heavy particles. On the other hand the theoretical value 
refer to the actual path of the particle and the experimental value refer to 
the projected path, this causing the obtained values for Se to be too high. The 
uncertainties in the values of Se will therefore be of the order of ±10 °/0 for 
the light particles up to ± 30 °/0 for the heavy particles.
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10. The Nuclear Stopping Cross Section

The ultimate aim of the present experiment is to obtain information on 
the nuclear stopping. Since the nuclear stopping is most dominating in the 
stopping of the heavist particles, Neon shall be used as example in the 
following analysis. To learn about the nuclear stopping we might use the 
reverse of the procedure for deducing the electronic stopping, i.e. we might 
assume the theoretical value of the electronic stopping to be correct and 
subtract it from the experimental values of the total stopping. However since 
for Neon the experimental value of Se in all measurements has been found 
to be much smaller than the theoretical estimate, the use of the latter without 
correction is not reasonable. Instead, two different values, Sei and Se2 of 
the electronic stopping slopping cross section have been tried. Sei is the 
theoretical value from L.S.S.3, multiplied by the ratio between the present 
measured value and the theoretical value for the total stopping cross section 
at 120 keV. Se2 is the theoretical value multiplied by a factor obtained from 
measurements of the stopping of Neon in Air, Hvelplund6, and the stopping 
of Neon in Nitrogen, Ormrod31. Their measurements lead to almost the 
same ratio between the experimental and the theoretical values for the total 
stopping.

In figure 16 the resulting curves are shown. The choise between and 
Se2 is seen to be of importance for the experimental value of Sn at high 
energy, but rather unimportant for the position and magnitude of the maxima. 
Judging from the curves at high energies, where the slope of Sn2 too quickly 
approaches zero, Sei is a better choice than Se2. The general shapes of the 
two curves Sni and Snt (curves 7 and 3) are in reasonable agreement, but 
the magnitudes and positions of the maxima differ.

Table 1 gives the ratios between the maximum values of the experimen­
tal and theoretical nuclear stopping cross sections, = Sni/Snt, and the 
ratios of the energies corresponding to these maxima, = EnilEnt, for the six

Table 1.

A rS SnlJSnt rE ^nl^nt

Boron............................................................ 0.46 2.5
Carbon.......................................................... 0.55 2.3
Nitrogen........................... ........................... 0.59 2.8
Oxygen......................................................... 0.61 3.0
Fluorin......................................................... 0.66 1.7
Neon.............................................................. 0.61 2.7
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Fig. 15. Electronic stopping cross sections. 1 are the present experimental results and 2 the 
theoretical value from L.S.S.8.

Fig. 16. Deduction of the pure nuclear stopping cross section. The curves are: 1, experimental 
total stopping Sx; 2, theoretical total stopping St, 3, theoretical nuclear stopping Snt from L.S.S.3; 
4 and 5, reduced theoretical electronic stopping curves Sei and Se2, respectively; 6 and 7, experi­
mental nuclear stopping curves Sn2 and Sni, obtained from curve 1 by subtracting SC2 and Sei, 

respectively.



30 Nr. 4

heaviest elements, which were measured. The experimental maximum values 
of Sn are about half the theoretically predicted, and the maxima arc experi­
mentally found to lie at energies from two to three times higher than theoretic­
ally predicted.

To take into account possible systematic errors, the uncertainty in the 
Se-value and in determining the exact position of the maximum, we estimate 
uncertainties of the order of ± 30 °/0 for rE and rE.

No correction for the difference between the projected range and the 
actual path length was applied. It should be pointed out, that therefore the 
difference between the theoretical and the measured values of the stopping 
cross sections, especially in the low energy range, may be expected to be even 
larger.

In the paper preceding L.S.S.3 (Notes on Atomic Collisions I)32 stopping 
cross section curves for three screened Coulomb potentials were given. In 
addition to the curve corresponding to the Thomas-Fermi potential, which 
was chosen in the further development of the slopping theory, curves corres­
ponding to a Lenz-Jensen potential and a Bohr potential were given, 
(ligure 7, Ref. 32). Comparing them to the Thomas-Fermi curve, in the same 
way as the experimental results, they are both found to have rs values of 
about 0.88, and the Lenz-Jensen curve has rE = 1.6 and the Bohr curve 
has rE = 2.5.

Unpublished stopping power measurements by Hvelplund33 and recent 
range measurements by Neilson el al34 in the e-range in which the nuclear 
stopping is dominating, also suggest that the nuclear stopping is overestimated 
by L.S.S.3 and that the application of an other potential will give a better 
agreement between theory and experiment.

11. Conclusion

By applying the proportional detector technique, stopping cross section 
measurements were extended to very low energies and nearly all the problems 
connected with the fractionization effects and partly the problem connected 
with the recoil effect were solved.

The obtained complex results show that an extension of the measure­
ments would be highly interesting, especially by using noble gases as stopping 
media and heavier ions as particles.
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1. Introduction

This paper is concerned with the generalization of certain results from the 
theory of standard Borel spaces to the theory of (non-commutative) opera­

tor algebras. With each separable C*-algebra  is associated a C*-algebra  
SS — the Borel algebra. In the commutative case jsZ is isomorphic to the algebra 
of continuous functions vanishing at infinity on some separable locally com­
pact Hausdorff space X and SÖ is then the algebra of bounded Borel functions 
on the standard Borel space X. In the non-commutative case the Borel 
algebra serves as an analogue of the bounded Borel functious. For example 
the central disintegration of representations of aaZ is uniquely determined 
by standard measures on the spectrum of the center of (see [4] and [13]).

In theoretical quantum physics the symmetries or the time evolution 
of a physical system is often given by a group of unitaries G on a Hilbert 
space H on which the observables, or rather the G*-algebra  j/ they gene­
rate, have a faithful representation tc. A recurrent problem is that the group 
G does not leave the algebra invariant although it induces automor­
phisms of the von Neumann algebra generated by the observables.
This could be explained as the effect of a wrong choice of “local algebras” 
(as defined in [5]), but it might also be an inherent obstacle in the model. 
Certainly there are many purely mathematical examples where the modular 
group corresponding to a cyclic and separating vector for %(j2/)" does not 
give automorphisms of 7i(js/). As pointed out by E. B. Davies a natural 
approach (from a commutative point of view) would be to show that the 
automorphisms of 7r(j3/)" induced by G can be lifted to a group of automor­
phisms of the Borel algebra of a/. Then one would have a global (i.e. 
space free) description of G but of course at the expense of dealing now 
with the considerably larger algebra & of “measurable observables”. The 
present paper evolved from an attempt to solve the mathematical problems 
involved in such a lifting.

Our point of departure is a non-commutative version of von Neumann’s 
classical theorem on point realizations of isomorphisms between L°°-spaces, 
which constitute section 3 of the paper. In section 4 we show that each

1*  
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separable locally compact a-weakly continuous group of automorphisms of 
a von Neumann algebra on a separable Hilbert space can be lifted to a group 
of automorphisms of an essentially unique Borel algebra. The result is an 
exact analogue of a result about transformation groups of standard spaces 
proved by G. W. Mackey in [8]. In section 5 we show that each separable 
uniformly continuous group (in particular each countable group) of auto­
morphisms of a von Neumann algebra quotient of a Borel algebra & can 
be lifted to a uniformly continuous group of automorphisms of &. Finally, 
in section 6 we comment on the equivalence problem for Borel algebras.

2. Notation and preliminaries

Let jZ be a separable C*-algebra  and consider jZ in its universal repre­
sentation so that the enveloping von Neumann algebra stf" is isomorphic 
(as a Banach space) to the second dual of jZ (see [3, § 12]). For each subset 

of let £^sa denote the self-adjoint part of . Let &sa be the smallest 
class of operators in aZsa which contains jZsa and is closed under the process 
of taking limits of bounded monotone (increasing or decreasing) sequences 
from the class. The Borel algebra associated with stf is the C*-algebra  
£8 = + (see lA P- 316] and [11, Theorem 1]). Each representation

of jZ on a Hilbert space H extends uniquely to a normal representation 
(again denoted by rc) of srf" onto the von Neumann algebra generated by 
tt(jZ). The restriction of to 38 maps 38 sa onto the monotone sequential 
closure of 7i(stf\a (by [10, Proposition 4.2]) and if H is separable, rr(.Z’) is 
the von Neumann algebra generated by ti(jZ) (by [6, p. 322] or [12, Theorem 
1]). The fact that the atomic representation of vZ extends to a faithful 
representation of ([13, Corollary 3.9]) allows us to regard 38 as the non- 
commutative analogue of the bounded Borel functions on a standard Borel 
space.

3. A theorem of von Neumann

A classical result of J. von Neumann asserts that if and are prob­
ability measures on standard Borel spaces A) and X2, respectively, such that 
Ljttl (Xj) is isomorphic lo (X2), then the isomorphism can be lifted to a 
Borel isomorphism of X1\A1 onto A2\ïV2 where /^(Ay) = <a2(Ar2) = 6 (see 
[9]). The theorem below is the non-commutative analogue of von Neumann’s 
result and yields a reasonably simple proof of it upon specialization to 
commutative C*-algebras.
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Theorem 1. Let jsZx and be separable C*-algebras  with Borel algebras 
^x and &2, respectively. If for each i = 1, 2, zit is a representation of jZ) 
on a separable Hilbert space and o is an isomorphism between the von 
Neumann algebras and tt2(^2) then there are central projections
c« in SSi with %x(l -e$) = 0 and an isomorphism z of ex^x onto e2&2 such 
that Q 7z1(x) = %2 Â(æ) for each x in ex^?x.

Proof. Since each quotient of a separable C*-algebra  zZ has a Borel algebra 
isomorphic to a direct summand in (see section 6, Proposition 3) we may 
assume that the representations 7t1 and tt2 are faithful on x and zZ2.

Let zZ3 (resp. zZ4) denote the separable C*-algebra  generated by 
^iGA) and ^-1%2(eß/2) (resp. rc2(zZ2) and £%x(zZx)). Then e(zZ3) = zZ4. Choose 
separable C*-algebras  Oh in containing stf i such that o srf i+2.
There are then central projections zi in such that tt/(1 -z$) = 0 and m 
is injective on zi3>i (take 1 — zi to be the support projection of the separable 
set ker zii 0 3)f).

For each x i zZ x define 0o(.r) as the unique element in z2^2 satisfying 
^2^o(æ) = ^i(æ). Then ø0 is a morphism of zZx into <^2 (even an isometry). 
Since ^2 is a Borel algebra there is a unique extension 0X of 0() to a u-normal 
morphism of é^x into ,^2. As 7i20x(x) = f°r each x in the same
is true for any x in &r. In the same manner we obtain a cr-normal morphism 
<^2 of into satisfying zt^^x) = @_1%2(a?) for each x in ^?2.

Put lP = ø2øx. Then for each x in z^x

%x ^(.r) = %x ø2^i(æ) = e_1zr2 ^i(æ) = Q~rQ n\(x) = %x(x).

Let (æn) be a norm dense sequence in zZx and for each n let ijn be the central 
projection supporting xn - TJ(xn). Then %x(yra) = 0, whence zrx(y) = 0 where 
U = V and (1 - y) (xn- lP(xn)) = 0 for all n. Since (xn) is a generating 
sequence for ^x we have (1 - y) (x-V^a?)) = 0 for all x in ^x. Define 
/x = AP(1 - y). Then

^i(A) = A %x ^(1 -y) = %x(l -y) = 1,

so that %x(l —fi) = 0. We have fi(x — ^(x)) = 0 for all x in ^x; in particular 
fi(fi ~ ^(A)) = d so that fi < ^P(fi). In the same manner we obtain a central 
projection f2 in &2 with tt2(1 - f2) = 0 and f2< ^X02(A) such that 
fz(x- 0X02 (x)) = 0 for all x in &2.

Define ex = fx <P2{f2) and e2 = f2 $i(fi). Then

^2(^2) “ ^A(A) ^2^1(A) ^A(A) fl — ei> 
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and similarly 01(c1)>e2- Define A on by A(x) = e2 0x(x) and ft on 
e2^2 by y(x) = e1 02(x). If x e ^1^1 then

/U(x) = ex 02(e2 0x(x)) = ex 02(e2) lP(x) = et P(x) = er x = x, 

and similarly Â/z(x) = x for each x in e2^2- Thus Â is an isomorphism of 
ex38x onto e2^2 and it is clear that %2Â(x) = ^%1(x) for each x in ex38r.

4. The Borel G-algebra associated with an automorphism group 
of a von Neumann algebra

Let jZ be a separable C*-algebra  and G a separable locally compact 
group of automorphisms of j?Z such that each function ^->^(x), x e j/ is 
continuous from G to «sZ. By double transposition we may extend G uniquely 
to a group of automorphisms of -J". The Borel algebra 38 of j/ is a subset 
of jaZ", and since the class of self-adjoint operators x for which c/(x) G 38 
for all .g in G is monotone sequentially closed and contains Jsa, it contains 
38sa. Thus we may regard G as a group of automorphisms of 38. We shall 
refer to this situation by saying that 38 is a Borel G-algebra.

Lemina 1. If 38 is a Borel G-algebra and ep is a bounded functional omsZ 
then for each x in 38 the function g -> <</(x), ep~) is Borel measurable on G. 
Moreover, for each £ in L1(G) (with respect to a left Haar measure) the 
element £(x) in -cZ" given by

<ê(æ), ep) = <g(x), q) S(g)dg

belongs to 38.

Proof. If x e then each function g -> <r/(x), ep~) is continuous on G and 
the element £(x) belongs to jaZ. Since the class of self-adjoint operators which 
satisfy the two conditions in the lemma is monotone sequentially closed and 
contains jaZsa, it also contains 38 sa.

The following result is known (see [1, 3.2 Satz]). For completeness we 
indicate a proof.

Lemma 2. Let G be a separable locally compact group of automorphisms 
of a von Neumann algebra JI on a separable Hilbert space H. If for each 
x in J/ and each pair Ç, g in H the function g -> (p(x) £|^) is Borel measur­
able on G then there is a faithful normal representation q of JZ on a separable 
Hilbert space K and a strongly continuous unitary representation g -> ug of 
G on K such that Q(g(x)') = ug q(x) ug. In particular, G is cr-weakly continuous 
on JZ.
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Proof. Let K be the separable Hilbert space of square integrable functions 
£ from G to H with the inner product

(£h) = JG(^(7i)h(A))dh-
Define a strongly continuous unitary representation of G on K by (ug£) (71) 
= £(<7_17i). By assumption each function g g(x)£, x e Ji, £ e H is weakly 
Borel measurable and bounded so that if £ E K we may define q(x)£ in K 
by (o(x)f) (7i) = h~1(.r)£(7z). It only requires a mildly routine argument to 
show that @ is a faithful normal representation of Ji (since H is separable 
it is enough to check the normality of q on increasing sequences from Ji, 
where Lebesgues monotone convergence theorem applies) and that o(f/(.r)) 
= ugofx)Ug for all x in Ji and g in G.

A cr-normal representation % of a Borel G-algebra 3S is called G-invariant 
if the kernel of % is a G-invariant ideal in The next result characterizes 
the G-invariant representations of 38. The equivalence of conditions (iii) 
and (iv) is due to H. J. Borchers in a more general setting (see [1, 2.3. 
Theorem]).

Proposition 1. Let js/ be a separable G*-algebra  with Borel algebra Jf and 
G a separable locally compact group for which J is a Borel G-algebra. The 
following conditions on a representation % of J on a separable Hilbert space 
are equivalent:

(i) re extends to a G-invariant representation of JL

(ii) The kernel of n in jaZ is G-invariant and the elements in the representa­
tion of G as automorphisms of 7t(<J) are all extendable to automorphisms 
of 7r(^’).
(iii) The transposed action of G on the dual of leaves the predual of 
7t(&) invariant (as a subset of the dual of j/) and for each qp in the predual 
of %(^) the function g -> ^(99) is norm continuous.

(iv) 7t is quasi-cquivalcnt to a representation 0 of on a separable Hilbert 
space in which G has a strongly continuous unitary representation g -> ug 
such that Q(g(x)) = ug q(x)u*.

Proof. The implications (iv) => (iii) => (ii) are immediate.
To prove (ii) => (i) note first that an automorphism g of %(j/) is ex­

tendable to an automorphism g of tt(^) if and only if g is cr-weakly continu­
ous on tt(j/). Let g g denote the representation of G as automorphisms 
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of Since by assumption n(tq(.x')) = p(.t(.x’)) for all x in the same 
is true for all x in the monotone sequential closure &sa of ^/Sa, which shows 
that the kernel of tt in & is G-invariant.

The implication (i) => (iv) follows from Lemma 2 since G acts on n(^) 
as a Borel group by Lemma 1.

For every topological group G of automorphisms of a C*-algebra  j/ let 
stf c denote the C*-subalgebra  of srf consisting of those elements x for which 
the function g -> g(x) is continuous.

Lemma 3. Let be a von Neumann algebra on a separable Hilbert space 
and G a separable locally compact group of automorphisms of uZ which is 
cr-weakly continuous. Then there is a separable G-invariant C*-algebra  of 

which is weakly dense in

Proof. If x e and £ e LX(G) then the element

£(æ) = J </(æ) Kg)dg

(defined as a weak integral on the pre-dual of belongs to uZ; and if £ 
runs through an approximate unit for />(G) then £(.r) converges cr-weakly 
to x because G is cr-weakly continuous. However,

#(£(») = J Xæ) dh

so that
||p(^(æ)) - £(x)|| < ||.r|| J I ^(g^h) - £(h) | dh 0

as g tends to the identity of G. It follows that £(.r) e .J-/c for each x in di, 
which shows that is weakly dense in .

Choose a separable weakly dense C*-algebra  jaZ0 of c. If (gt) is a 
countable dense subgroup of G let stf be the C*-algebra  generated by U g*  (j/0). 
Clearly j/ is separable and weakly dense in , but since is G-in- 
variant, -.oZ so that for each x in stf the set {j/x-Çx’)} is norm dense in 
the orbit G(.x’); whence G(x') <= jaZ so that -srf is G-invariant.

Theorem 2. (cf. [8, Theorems 1 and 2]). Let G be a separable locally com­
pact cr-weakly continuous group of automorphisms of a von Neumann 
algebra on a separable Hilbert space. There is a separable C*-algebra  

whose Borel algebra is a Borel G-algebra and a G-invariant repre­
sentation such that rr1(^’1) = .

If jsZ2> and %2 satisfy the same conditions then there are central 
G-invariant projections ex and e2 with rr1(l — cq) = %2(1 — e2) = and an iso_ 
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morphism Â of the e1âS1 onto e2£%2 which commutes with G and satisfies 
= %2

Proof. The existence of jaZx, and %x follows immediately from Lemma 3. 
To prove the essential uniqueness we shall repeat the constructions from the 
proof of Theorem 1 with minor adjustments arising from the action of G.

Note first that if a*  e and (£n) is an approximate unit for LX(G) then 
II x — Çn(x) U -> 0. Thus for z = 1, 2, if bi E &i with = x then £n(bi) 
E by Lemma 1 and as in the proof of Lemma 3 we see that £w(bj) E &iC. 
Since %i(ên(ôi)) = £n(æ) we have shown that m(&ic) = ^c.

With this in mind we can choose the C*-algebras  Siïi as subalgebras of 
SSic. (The notation is as in the proof of Theorem 1). We may assume that 
the ^’s are G-invariant, replacing them otherwise with the C*-algebras  
generated by U gk(Sài), where ((?&) is a countable dense subgroup of G. 
This implies that the support projection 1 — z$ of the set ker zn 0 is 
G-invariant, thus zt&t <= &iC- Therefore the morphism of into Sß2 will 
satisfy <= ^?2C. Moreover, since z2Q)2 is G-invariant, ø1(zy(æ)) =
gr(01(a;)) for each x in and consequently for all x in Since a similar 
statement is true for 02, the endomorphism P = ø2øx of will be G-in­
variant. In particular, || ’/'(.r) - zy( ^(.r)) || < ||æ-g(æ)) ||, which shows that 
^(^1C) <= ^1C.

Since therefore xn - P(xn) E &1c, the central projection yn is the limit 
of an increasing sequence of positive elements from ^lc. (With an = Lrw—^(æn)! 
and (zvj) a dense sequence of unitaries in put bnk = onllj •

bnk S ynf Replace yn by y'n = V gk(yn). Then yn is G-in­

variant. In fact, if g is a limit point of (zy*)  then for each state (p of

<ff(yn), <P> lim inf <gk(yn), <p> < <.y'n, <p>,

since g -> <(z/n), <p)> is a lower semi-continuous function on G. It follows 
that gÇy'j < yn, whence g^y'^ = yn.

We still have 7i1(y^) = 0 and the construction from the proof of Theorem 
1 can now be completed without further alterations. The resulting projections 
ex and e2 will be G-invariant and since V7 is already G-invariant, so is the 
isomorphism Â from to e2^2.

Simple commutative examples (e.g. rational translations in LK(R)) 
show that even if G is ergodic on it may not be possible to find a Borel 
G-algebra S8 and a G-invariant representation of & on such that G is 
ergodic on & (in the strict sense). However, as the next result shows, the 
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other possibility is excluded. If G is ergodic on then it is ergodic in each 
G-invariant representation of &.

Proposition 2 (cf. [8, Theorem 3]). Let & be a Borel G-algebra and n a 
G-invariant representation on a separable Hilbert space. If x G & and n(x) 
is G-invariant in then there is a G-invariant element y in £% such that 
<y) = *(*)•

Proof. If a = rr(æ) let j/x be the separable G-invariant C*-algebra  generated 
by and a. Since a E we have <=■ so that G is pointwise 
norm continuous on j/x. With -5^x as the Borel algebra of j/x we see that 
^x is a Borel G-algebra, and the identical representation of jaZx extends to 
a G-invariant representation rrx of ^x. By Theorem 2 we can find central 
G-invariant projections e and ex with tt(1 — c) = 7tx(l — ex) = 0 and a G-invariant 
isomorphism Z of ex^x onto such that %x = ttÂ. Set y = À(e2a). Then y 
is G-invariant since e2n is G-invariant and 7i(y) = rrx(c2u) “ ^(æ), as desired.

5. Lifting automorphisms from von Neumann algebras

Let again z/ be a separable C*-algebra  with Borel algebra &&. If n is 
a representation of srf on a separable Hilbert space and G is a group of auto­
morphisms of the von Neumann algebra 7r(^) is it then possible to lift G 
to a group of automorphisms of & such that G% = %G?

If stf is commutative and G is separable, locally compact and tr-weakly 
continuous then this problem has a positive solution. We sketch the argument: 
The atomic part of is G-invariant and corresponds to a direct summand 
in 08. The lifting in this case presents no problems and we assume therefore 
that Tr(^) contains no minimal projections. By Theorem 2 there is a com­
mutative separable C*-algebra  z/x such that its Borel algebra 08 x is a Borel 
G-algebra, and a G-invariant representation %x such that %x(^x) = %(^). 
By Theorem 1 there are projections e and ex with %(1 - e) = %x(l -e) = 0 
and an isomorphism z of eS8 onto ex^x such that n = We have 08 = 
88 (X} and ^x = ^(A\), where X and A\ are standard Borel spaces which 
are uncountable (hence Borel isomorphic to R) since n(^’) has no minimal 
projections. We may identify 1 — e and 1 — ex with Borel subsets N and Arx 
of X andAx, respectively; and we may assume that they are both uncountable, 
replacing otherwise e and ex with slightly smaller projections. Then N and 
Ax are Borel isomorphic so there is an isomorphism Âo of (1 — e)^ onto 
(1 — ex)^x. Combining z and we obtain an isomorphism Ax of onto Z^x 
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such that n = Since is a Borel G-algebra we can define G = Àf1GÀ1 
on Pfi and this gives a lifting of G from to 38.

In the general case the problem remains open even when G is a cr-weakly 
continuous one-parameter group of automorphisms of We have a
positive solution, however, if G is uniformly continuous on

Theorem 3. Let be a separable C*-algebra  with Borel algebra If n is 
a representation of on a separable Hilbert space and G is a separable 
uniformly continuous group of automorphisms of the von Neumann algebra 
%(<^) then G can be lifted to a uniformly continuous group of automorphisms 
of 38.
Proof. Choose a separable C*-algebra  in Tr(^) which is weakly dense. 
We may assume that x is G-invariant, replacing it otherwise with the 
C*-algebra  generated by U where (g^) is a countable dense subgroup
of G. Then G is a uniformly continuous group of automorphisms of 
hence by double transposition extends to a uniformly continuous group of 
automorphisms of .p/[. By restriction we may regard G as a uniformly 
continuous group of automorphisms of the Borel algebra 38x of stf

By Theorem 1 there are central projections e and eT with tt(1 - e) = 
%i(l — Cj) = 0 and an isomorphism Â of e38 onto ex38r such that tc = tïjÀ. 
With (g'jt) a countable dense subgroup of G define p1 = A <7*(ei)  and p = 
Â_1(pi). Then pr is G-invariant; for if g is a limit point of (gn) then

g gk(e-f) = lim gnffk(ei) > plt

whence g(pif) > p! and since this holds for all g in G we have g(pf) = pv 
For each g in G and x in S3 define

^(.r) = + (1 -p) x.

This gives a faithful representation of G as a uniformly continuous group 
of automorphisms of and since for each x in 38

ng(x) = x/~lg/.(px) = x^g/Xpx) = g:i1Å(px') = gx(x),

this representation is a lifting of G.

Corollary. If ti is a representation of ona separable Hilbert space and 
G is a countable group of automorphisms of the Neumann algebra 
then G can be lifted to a group of automorphisms of
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6. The isomorphism problem

One enormous simplification in the theory of standard spaces is that 
there are only countably many Borel isomorphism classes and that the cardina­
lity is a complete invariant for each class. In the non-commutative situation 
very little is known about C*-algebras  having isomorphic Borel algebras. 
But with uncountably many different von Neumann factors around it seems 
improbable that there should be only a countable number of isomorphism 
classes of Borel algebras.

The type I situation is completely known. If Hn is an n-dimensional 
Hilbert space, 1 < n < oo, and Xn is a standard Borel space let ^(Xn,B(Hn)) 
denote the algebra of bounded weakly Borel measurable functions from Xn 
to B(Hn). If eß/ is a separable C*-algebra  of type I then its Borel algebra 
is isomorphic to an algebra 27© &(Xn, B(Hn)) by [11, Proposition 7] (see also 
[2, Theorem 4.5]). Each isomorphism class is therefore determined by a 
sequence of standard spaces, one from each dimension. In particular there 
are only countably many isomorphism classes in each dimension.

It is evidently a problem of great interest to determine when two (^-al­
gebras have isomorphic Borel algebras. If so they have the same representa­
tions, and these representations can be decomposed in the same manner. 
M oreover, there is an affine Borel isomorphism between their state spaces. 
The isomorphism classes are much more unstable in the non-commutative 
theory than usual. For example, by adjoining a unit to a C*-algebra  one 
may obtain a C*-algebra  which is not Borel equivalent to the former; simply 
because the latter has a one-dimensional representation while the former may 
have none. The next result provides us with some examples of non-isomorphic 
C*-algebras  whose Borel algebras are isomorphic.

Proposition 3. Let -_c/ be a separable C*-algebra  and > a closed ideal of as/. 
Then the Borel algebra of .<?/ is isomorphic to that of J © «ß// J.

Proof. Let z be the central projection in the Borel algebra of obtained 
as the supremum of any approximate unit for . Then ÿ = z38 A stf and 

= (1 and if II is the universal Hilbert space for stf then zll
and (1 -z) H are the universal Hilbert spaces for J and , respectively. 
It follows that the Borel a’gebra of / is z& and the Borel algebra of 
is (1 — and this completes the proof.

Problem. Do all hyperfinite C*-algebras  have isomorphic Borel algebras.
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In spite of the far reaching formal completeness of the General Theory of 
Relativity, the inherent conceptual and mathematical difficulties of the 

scheme, together with the absence of conclusive empirical evidence, has 
sustained the discussion of the problem of gravitational radiation, ever since 
the original work of Einstein*  on the energy loss from a spinning rod.

* A. Einstein, Sitzungsberichte der Preuss. Akad., Berlin, p. 688 (1916); p. 154 (1918).
** A comprehensive discussion of these problems is given in a treatise shortly to appear in 

Kgl. Vid. Selsk. Med.
1*

In this situation it may be of interest to isolate from classical electro­
dynamics those basic principles, the joint validity of which implies the 
occurrence of electromagnetic radiation, and investigate to what extent con­
clusions regarding gravitational radiation can be based solely on the same 
premises. Having clarified this problem, one may then as a next step explore 
the consequences of the introduction of new features, which — like the Equi­
valence Principle - distinguish between gravitational and electromagnetic 
interactions.

The clue to the radiation problem is to be found in the limitations in 
the possibility of accounting for the instantaneous energy balance for a system 
of interacting particles solely in terms of the particle degrees of freedom. 
Clearly, no such limitations exist in the purely static case, and consequently, 
from this point of view, the impartion of energy to a static field must be 
regarded as a matter of convention. Quite a different situation is met with in 
the case of time varying charge and current distributions. Due to the retarda­
tion of physical actions, the field now represents independent degrees of 
freedom of the total system, which can only be ignored or eliminated at 
the expense of giving up the notion of instantaneous energy momentum 
balance.**

To illustrate this interrelationship in the case of electrodynamics, we 
consider two particles of charge Q — originally at rest at a relative distance
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2zy -—, which are moved simultaneously and symmetrically towards each 
other to a relative distance 2zy (zy < zy), where they stay at rest (see figure 1). 
If the process is carried out adiabatically, the external work performed 
equals the change in potential energy

Wad
Q2 Q2
2rf 2rt‘ (1)

If, however, the process is carried out in a finite time, the work required 
will in general, as a consequence of the retardation, diller from Wad-

Suppose that the duration of the process, At, is chosen so that

i'i - i'f < cAt < n + zy, (2)

which implies that the electromagnetic force on each particle due to the other 
one during the entire motion is given by the original static Coulomb field. 
In this case, the work required to overcome the electrostatic repulsion only 
amounts to

(3)

The very fact that this work differs from the change in potential energy (1) 
faces us with the choice of either giving up the customary idea of energy 
conservation, or recognizing the existence of some non-conservative force 
acting on each particle independently of the motion of the other since 
during the process considered no communication is possible between the 
particles. Within the customary mechanical framework the non-conservative 
character of this “damping force’’ is interpreted as a manifestation of an 
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independent set of degrees of freedom with which the particles may interact 
and exchange energy, the damping force being just a phenomenological way 
of taking this interaction into account.

Reconsidering now the above process in this extended framework, we 
notice that the external work, Wd, required to overcome the damping force 
on each particle during the displacement must, for symmetry reasons, be 
the same for both particles and, according to its definition, independent of 
the motion of the other. Thus the total energy to be supplied is not given 
by eq. (3) but by the relation

+ rf
Q*  U7 ----- F WD 
Zl’i (4)

where Wd is related to the hypothetical “radiation energy’’ Sr by the re­
quirement of energy balance

(5)

Hence :

(6)

Whereas this expression is still compatible with a complete absence of radia­
tion, corresponding to Sr = 0, evidently, Sr and Wd cannot both vanish. 
Furthermore, the fact that, according to the initial conditions, Sr 0, implies 
that IF/? is positive definite, reflecting the irreversible character of the process 
of radiation emission.

Consider now in particular the case in which the equality sign in eq. 
(2) holds, i.e.

CZH = Ti + Tf (7)

and assume for simplicity that

Ar = ri - cAt. (8)

Then, eq. (6) may be rewritten in the suggestive form

Q2/ Ar V2Wd-^ = 2-(—jdt (9)

So far we cannot draw any conclusions as to the individual value of 
Wd and Sr. However, since Wd, as already noticed, is independent of the 
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motion of the other particle, it may he determined by considering another 
process, in which only one of the particles is displaced along the same world 
line as before, whereas the other is kept fixed. Denoting by Er the energy 
transferred to the radiation field during this process, the energy balance now 
yields the relation :

Q2 , Q2Er + —^— = ^W+~, (10)
rt + iy “ 2r/

where W is given by eq. (4) as before. Hence it follows that

Er = Wd- (11)

Since the role of the fixed charge in this process is purely auxiliary, we may 
conclude, that whenever a charge, Q, is displaced a distance Ar during a 
time At, being at rest outside this time interval, a positive net external work 
equal to Wd has to be performed. In view of the relation (11), it is imme­
diately clear that eq. (6) simply expresses the amount of interference in the 
radiation process considered. Combined with simple invariance requirements, 
this fact fixes, as we shall now see, the absolute rate of radiative energy loss 
from the individual particle.

For the following discussion it is convenient to generalize the above 
experiment to include arbitrary but small displacements of the two charges. 
Introducing the change in dipolemoment

Adi = Q1Axl, Ad2 = (?2^2> (12)

the equation (9) is now easily seen to be replaced by

Adx • Ad2 — 3(Adi • ê)(Ad2 • ê)
(cd/)3

(13)

where ê denotes the unit vector along the line of connection of the particles.
As far as the energy loss from the displacement of a single particle is 

concerned, the demand that the rate contains ()2 as a factor, requires it for 
dimensional reasons to be proportional to 1/c3 times the square of the acce­
leration.*  Furthermore, due to the assumption of rotational invariance, the 
square of the acceleration æ can only occur in the combinations æ2 and

* The product (zfr) is rejected by the demand that the rate be proportional to the 
square of a field of the proper dimension decreasing like 1/r.
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(rr ’n)2, where n defines the direction of observation, or equivalently, in 
spherical components*

* Since the use of spherical tensors greatly facilitates the computations in the gravita­
tional case, we employ also here the same technique.

(14)

(^noting the well-known rotation matrices. Finally, the fact that we 
are dealing with a transverse vector field excludes the case h = 0. Since the 
invariants corresponding to h = 1 and 7i = - 1 are identical, the rate of 
energy loss must then be of the form

2 - 4lj (15)
where d = Qx and a is a numerical constant.

To determine the unknown constant a, we apply the general expression 
(15) to calculate, in the case of the experiment discussed above, the amount 
of interference also given by eq. (13). According to eq. (15) the total energy 
loss, R, from the two particles amounts to

“ JJ<16)

where the relation between the time and angle variables is evident from 
figure 2. In fact, since the displacement of the individual particle is as­
sumed to be small compared to their mutual distance cAt, we have

At 
tret = 1 - R1IC ~t - R/C- — COSÔ

1 - R2/C t - R/c + y COS0

From eq. (16) we immediately gel the interference term

f f ,lQdtRe{ 2 (18)
c J J RR'

(17)
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Fig. 2

cAt

where the axial symmetry around the z-axis, chosen along the line of con­
nection between the particles, restricts the summation to the terms with 
(i = p!.

Now, coupling the ^-functions, in the usual manner, by means of 
Clebsch-Gordan coefficients, we obtain*

(19)

Replacing through the relation (17) the variables / and cosO by G — ^ret 
and t2 = t£\, the eq. (19) takes the form

- Er1 - Eg> -
dtdt .

0 0

(20)

Finally, integrating by part once in each variable, we note that only 
the term with 2 = 2 survives, and we are left with

* We are here taking advantage of a notation for the coupling of spherical tensors, so 
convincingly recommended for its flexibility in a recent booklet on Nuclear Structure by A. Bonn 
and B. Mottelson:

P7>"
The phase conventions employed in the present paper are identical to those of the mentioned 
authors.
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- EP - ^2) = - < 11 1 - 1120 > 20 O;t>
<W

„ t/_(dd'»zld<2’)11;20
—

(21)

Comparing this result with eq. (13), rewritten in spherical components:

(ddWZld(2))11;20

(cd/)3

we conclude that

(13')

(22)

It needs hardly be emphasized that the argumentation has not aimed 
at the determination per se of the numerical value of the constant a, but al 
the elucidation of the assumptions which are crucial for such a determina­
tion. On the one hand, the existence of radiation is implied by the equations 
(6) and (11), which in turn rest solely on the principles of energy conserva­
tion and retardation. The answer to the further question as to the amount 
of radiation, emitted in a given process, demanded on the other hand ex­
plicit assumptions regarding the tensorial character of the field.

In the spirit of the above discussion, we shall commence the analysis 
of the gravitational case by exploring the consequences immediately to be 
deduced from the form of the static interaction (Newton’s law), the require­
ment of energy balance and retardation. To exhibit most clearly the inter­
play of the various assumptions, it is essential to employ a sufficiently general 
formalism.

With the purpose of deriving relations analogous to eqs. (9) and (11), 
let us consider the gravitational interaction energy between two bodies which 
are widely separated compared to their dimensions (see figure 3). 
Denoting by Zthe vector joining two fixed points, situated inside the bodies, 
the interaction energy becomes*

* The question of the interaction energy associated with the mass currents in the two 
bodies is not touched upon here. Accordingly, the following discussion is restricted to gravita­
tional radiation of the “electric multipole” type.

drldr2 (23)
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where a denotes lhe gravitational charge density, G the gravitational constant 
and the integration variables zq and r”2 are measured from the two fixed 
points mentioned. It is immediately clear, that the expansion of lhe rotational 
invariant l/|r + zq - ~r21 must have the form*

* See also K. Alder and Aa. Winther, Nuclear Physics A 132 (1969) 1.

Fig. 3

1

|/ï^2 (-)Aa(WU2)
2,4,2

( ^2i(rl) 22 (^2) ^2(^))(2,2,)22; 00

(24)

where the subscript again specifies the coupling scheme. For dimensional 
reasons the summation must be restricted to terms for which z = Aj + Z2, 
and by considering the special case, where zq, ~r2 and z*  are all parallel, the 
coefficients A(z, A2) are easily found to be

A(U4) - (-1)^0, + A2 - 2)4.d/-------2A*> !----------------- _ (25)I (2A.+ 1)!(2A2+ 1)!

Introducing the gravitational charge multipole moments for the first body,

(26)

and analogously for the second, the expansion of the interaction energy thus 
takes the form

- «2 0^0.4,.V)
À1 Å2Å

,22) 22; 00

I.2+1 (27)

Choosing the z-axis in the direction f, eq. (27) reduces to

-Gg.40,;.u2)(Q"QyW
2.2,2 r

(28)
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Let us consider rigid motions of the two bodies, assuming for simplicity 
the displacement of any point of the bodies to be small, compared to their 
mutual distance. For an adiabatic process, the external work performed 
equals the change in the potential energy (28). However, if the process is 
carried out in a finite time, At, the external work, VF, required, will — owing 
to the dependence of the interaction energy on the mutual orientation of 
the bodies — differ from its adiabatic value, when the retardation is taken 
into account. Considering, as before, the case*  cAt = r, the work Wis given by

* The choice of the velocity c in the present context does not amount to assuming that 
gravity propagates with the velocity of light, but merely that the propagation velocity does 
not exceed the light velocity.

vf = _ g2a(â,Ai,â2) [Qf(O)ZlQ^ + zl()^Qf(())] Åi Å2 J zo

(cZf/)Z + 1
(29)

where Q(0) refers to the initial value of the multipole moment in question 
and AQ to its change. Thus, the first term in eq. (29) is obtained as the 
external work required to change the multipole moment of the second body 
in the original multipole field of the first, and vice versa, whereas and 
Wp2) denotes the externally supplied energy to overcome the damping force. 
Clearly, just as in the electromagnetic case, the damping force acting on 
each body is independent of the motion of the other.

As a next step energy conservation is invoked in a form which leaves 
room for a possible gravitational “radiation energy’’, Sr-.

<%(t = 0) + W = <%(t = At) + Sr (30)

or -— by means of eqs. (28) and (29) -

R - = g 2 M'-Uj (cdt)Â+1 (31)

Again, considering a process in which only the first body is moved, the 
second being kept fixed, one concludes, in analogy to eq. (11), that VFj)1) 
equals the radiative energy loss, suffered by the first body under these 
circumstances. Specializing for the sake of simplicity to the case where only 
a single multipole moment, of order 2, is changed in each body, one obtains
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in strict analogy*  to eq. (13')

(czH)2^ + 1
(32)

Having thus obtained the interference term, we proceed to determine 
the general form of the radiative energy loss from a time varying multipole 
moment of order 2. Again, from dimensional arguments and rotational 
invariance (cf. also footnote on page 6), the rate can only depend on the 
invariants

(33)

(A +1) 
where n defines the direction of observation and denotes the (2 + 1 )- 
fold time derivative of Clearly, the (2+1) invariants (33) correspond 
in terms of cartesian components to the possible quadratic invariants formed 
of a symmetric, traceless tensor of rank 2 and the vector n.

Relying on the analogy to the case of electromagnetism, the idea sug­
gests itself, that the rate of energy loss can only depend on such a combina­
tion of the invariants, which can be interpreted as a quadratic rotational 
invariant formed from some tensor field describing a definite spin s. Any 
such field can be expanded in terms of tensor spherical harmonics

2, h = 2,2 - 1, . . . , 0,G 

f2A+l

(Â+1)

2
fl

2 = s, s + 1, . . . °o

ft = 2, 2 - 1, ... — 2 ; h = s, s - 1, . . . — s,

where the 2 s + 1 unit polarization tensors ssh (each of which of course 
carries the appropriate cartesian indices) necessarily become orthogonal to 
each other for different values of h, if they are defined so as to transform 
irreducibly into each other according to the unitary representation Thus, 
each of the invariants (33) has the form of the square of a tensor spherical 
harmonic with definite h and definite amplitude.

Although the question of the propagation velocity of gravity has been 
left open in the argumentation so far, nevertheless the form of Newton’s

* By the comparison of (32) and (13’) it must be borne in mind that the definition of the 
electric dipole moment, d/lf differs from the corresponding mass moment (26) by a factor:

Furthermore, there is an overall change of sign, due to the difference in sign of the basic inter­
actions.
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law suggests that gravity propagates with the velocity of light, and thus it 
is expected that only the two “helicity” amplitudes corresponding to h = ± s 
are present in the expansion of the free field. Hence the rate of gravitational 
radiative energy loss of multipole order 2(> s) must have the general form

d2ER

dQdt
(34)

where is a numerical constant.
To determine this constant, we apply the general expression (34) to 

calculate, in the case of the experiment discussed above, the amount of 
interference, also given by eq. (32). According to eq. (34), the total energy 
loss, <o r, from the two bodies amounts to

where and t£\ are again given by eq. (17). Hence, by steps strictly 
analogous to those leading to eq. (20), one obtains the interference term

- Eg> - 1)*<A»  A -«| V 0>-
c A-

(Â+1) (Â + 1) I
Qa’(G) Q(P (z2)Jaa;â'o

(36)

where it is again understood that the z-axis is chosen along the line of con­
nection of the two bodies.

Integrating by part Â times in each variable, we note that only the term
with z' = 2Â survives, and since, moreover, the coefficient to the highest

power of 2 1 in is

(4A)I
22â((2â)!)2 ’

one is left with
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4 ncn.^ G( — )s<2s 2 - s I 22 0)
(dpy . (U) !_

(cZÜ)2Â + 1 ' 22Å((22)!)2

I 1 2+112 + 2
- (2Â + !)[[(22 + !)! I]2 2 ) 2-1'

which only dillers from the well-known result of electromagnetism by the ratio

* If, for instance, the value of s had been four, some mechanism had to be in operation 
to ensure conservation of the quadrupole and octupole moments appearing in eq. (32).

(37)

Comparing this result with eq. (32), and inserting the value for A(2 2, 2, 2) 
given by eq. (25), one obtains

22Â 1
** = (”’) (2 2 + 1 )/(4 2) ! <2s2 - s|22 0>’ (38)

Since the Clebsch-Gordan coefficient is positive for all s < 2, the demand 
that a; be positive requires the rank s to be even. If the basic interaction 
had been repulsive, as in electrodynamics, the interference term had changed 
sign, and the conslusion had been that .$• were odd.

More specific conclusions regarding the possible spin values, s, can be 
drawn by noticing that the relation (32) definitely predicts the occurrence 
of multipole radiation of any order unless some principle forbids the change 
of one or more multipole moments for an isolated system. Thus, in the case 
of electromagnetism, where the smallest possible value of s is one, the 
necessary prohibition of a change in the monopole moment is expressed by 
the principle of charge conservation. In the case of gravity, where the empi­
rically established equivalence between gravitational and inertial mass 
requires the gravitational charge density to be identified with the energy 
density, the conservation laws for energy and momentum prohibit the change 
of both monopole and dipole moments, at least in the limit where an un­
ambiguous distinction between source and field is possible. Barring ad hoc 
assumptions to exclude the change of higher multipole moments, the spin 
of the gravitational field can therefore only be zero or two*  Clearly, only the 
value s = 2 is immediately compatible with the fact that the energy density 
is a component of a four-tensor.

Returning to eq. (38) , we obtain for a; in the case s = 2

(39)
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<212-l|220> 2 + 2
<22 2~-2|22 0> ~ 2 - T

For the case of special interest, 2 = 2, eq. (34) then reads 

(40)

(41)

which, in terms of the cartesian components of the mass quadrupole moment 
tensor

Qtk = Jd.r a(x) [Sæiæfc - dure2], (42)

takes the familiar form*

g ... „ ...„ 
dQdt = + 2 - QikQkinini] ■ (43)

In so far as the assumptions underlying the present analysis are inti­
mately related to those on which the General Theory of Relativity is based, 
it is hardly surprising that the result (43) is identical to the one originally 
derived by Einstein. Accordingly, the emphasis in the above discussion has 
been placed on the elucidation of the interplay between those basic principles 
the joint validity of which implies the mentioned conclusions. In particular, 
it seems noteworthy that not only the existence of the gravitational radiation, 
but even its quantitative expression and spin character, can be so directly 
related to these simple premises. Of course, the price for this simplicity in 
the derivation has been a resignation with respect to that far reaching uni­
fication of the fundamental principles which is so remarkably achieved by 
the General Theory of Relativity.

* See f.i. C. Møller: Theory of Relativity (3. ed.), Oxford Univ. Press 1972. L.D. Landau 
and E. M. Lifshitz: The Classical Theory of Fields, Pergamon Press (3. ed.) 1971.
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Synopsis

In order to study the nature of the essentiel singularities occurring in Einstein’s theory 
of gravitation the collapse of an arbitrary spherical distribution of incoherent matter is inve­
stigated in detail. The treatment is characterized by the use of one global Gaussian system 
of coordinates in which the matter is constantly at rest and which is free of coordinate sin­
gularities both inside and outside the matter. These coordinates have a simple physical in­
terpretation and in the empty space outside the matter they represent a substitute for the 
rather formal Kruskal coordinates. The metric tensor is expressable in terms of simple well- 
known functions of the coordinates and the radial motion of light signals and the line shiit 
of spectral lines are given by simple formulae.
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Introduction

One of the most surprising and disturbing discoveries in later years is 
that of the occurrence of essential singularities in the solutions of Einstein’s 
gravitational field equations. Unlike the “coordinate singularities”, as for 
instance the well-known Schwarzschild singularity in empty space, essential 
singularities cannot be removed by any change of coordinates. The occurrence 
of non-trivial singularities in a physical theory may generally be taken as 
a sign that the theory has been applied to a phenomenon that lies outside 
the domain of applicability of the theory. Thus in the gravitational case one 
would be inclined to conclude that Einstein’s theory breaks down in regions 
of space-time close to the singularities i.e. for extremely strong gravitational 
fields - a thought that was not unfamiliar to Einstein himself.1

The most general proofs of the inevitability of singularities in Einstein’s 
theory were given by Penrose (1965), Geroch (1966) and by Hawking and 
Ellis (1968),2 who showed that this phenomenon is independent of the 
special form of the energy-momentum tensor of the matter provided the 
equation of state is such that

f.i°c2 + p > 0 I

everywhere inside the matter. Here /z° is the proper mass density regarded 
as a scalar, p is the pressure and c is the usual universal constant.

In order to study the nature of the singularities a little more closely 
we shall in this paper reconsider the simple problem treated by Oppenheimer 
and Snyder in 1939.3 These authors considered a model consisting of a 
spherical distribution of incoherent matter which initially (at t = 0) is at 
rest and fills a sphere of finite radius with constant density. Due to the mutual 
gravitational attraction the matter will start contracting and after some time 
the appropriate solutions of Einstein’s field equations develop singularities 
both inside and outside the matter. We shall here consider the somewhat 
more general case where the proper mass density initially is an arbitrarily 
given function of the distance from the centre. Of course, this does not make 
the model much more realistic, but the justification for treating this model 
in more detail is that the solution of the field equations, also in this more 
general case, can be expressed by simple well-known mathematical functions 

1*  
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and that the Hawking-Penrose condition I obviously is satisfied in this case, 
since p = 0 for incoherent matter and p° is positive. Thus the case considered 
represents the simplest imaginable illustration of the general theorems.

1. A Global System of Comoving Gaussian Coordinates

Since the physical system considered is spherically symmetric we can 
introduce a system of coordinates

= {r, 0, <p, (1-1)

in which the line element in 4-space

ds2 = gtkdxidxk (1-2)
is of the form*

ds2 = a(r, H dr2 + R(r, R)2d£>2 - b(r, t)dt2 I
(1.3) 

dX22 = dQ + sinWçA |

The functions a, R and b are determined by Einstein’s field equations 

G*--*7*  (1.4)

which have the “conservation laws”

= 0 (1.5)
as a consequence.

For incoherent matter T*  has the form

l\k = h°UiUk = p°c2UiUk (1.6)

where L’i is the four-velocity of the matter (divided by c) and the scalar 
function

h° = p°c2 (1.7)

is the proper energy density as measured in a local rest system of inertia. 
From (1.6) and (1.5) we obtain the law of conservation of proper energy 
in the form**

(h*U k)-,k = -L= 
]/~9

In our case h°(r, /) and U\r, R) are functions of r and t only, and the 
determinant g is (by 1.3)

*) In this paper the variables t, T, t, t0 etc, denote time variables multiplied by the 
universal constant c.

**) Semicolon and comma denote covariant and usual partial derivatives respectively.

(\/- gh°Uk),k = 0. (1.8)
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g = — ab Risin2O. (1-9)

Since g must be negative in any physically meaningful case we must have 

ab > 0. (1.10)

In order to secure a simple and unique physical interpretation of the 
solutions of the field equations we shall in this paper preferably use coordi­
nates (1.1) for which a and b are positive:

a > 0, b > 0. (1.11)

Only in this case does the system S of coordinates in 4-space correspond to 
a uniquely defined system of reference R in the 3-dimensional physical 
space with reference points (r, 0, cp) = (constants) that are moving with sub- 
luminar velocities, so that real measuring instruments can be attached to 
the reference points. The distance a between two reference points p± and p2 
on the same “radius vector’’, as measured by means of standard measuring 
sticks at rest in R, is then at the time t given by

fi

r2

(1-12)

Similarly, the time r0 between two events Px and P2 at a fixed reference 
point p, as measured by a standard clock at rest in p, is

^1

(1.13)

In their treatment of the problem Oppenheimer and Snyder used 
different systems of coordinates (and corresponding different systems of 
reference) inside and outside the matter. Inside the matter sphere they used 
a comoving system of reference of the type first introduced by Tolman, 
relative to which each matter particle is constantly at rest. Since the particles 
of incoherent matter are freely falling in the gravitational field, it follows 
that b is a function of t only; for the acceleration of a free particle momen- 

, db r p
tarily at rest is quite generally proportional to b — Therefore b must be 

zero in a comoving system of coordinates, and by a suitable transformation 
of the time variable it is then always possible to make

b = 1. (1.14)
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Ina comoving “Gaussian” system of coordinates of this type the components 
of the four-velocity are

^ = <5i4, Ut = -Ôi4 (1.15)

and the matter tensor (1.6) has only one non-vanishing component:

7? = - h°(r,0WM. (1.16)

In this case the conservation law (1.8) reduces to

(|/-ffh»),4-0. (1.17)

In the empty space outside the matter Oppenheimer and Snyder used 
so called “curvature coordinates”

Xi = {R, 0, (p, T} (1.18)

in which the line element is of the form

ds2 = A dR2 + R2dQ2 - BdT2. (1.19)

As shown first by Birkhoff the metric is in these coordinates outside matter 
in arbitrary radial motion given by the static Schwarzschild metric. Thus

A- 1 ,p. (1.20)
1 — a IR

where a is the Schwarzschild constant

xMc2 xH
a = ------  = — ,

4% 4tz

M is the total gravitational mass of the system and H = Me2 is the total 
energy of matter plus gravitational field.

By matching the internal and external expressions for the metric at the 
boundary of the matter one then obtains the motion of the boundary relative 
to the static system of reference of the system of curvature coordinates. 
However, the line element (1.19), (1.20) in the latter coordinates has the 
well-known drawback that the quantities A and B are singular for R = a 
and that the conditions (1.11) are violated for R < a. This makes the physical 
interpretation of the solution somewhat obscure for R < x, and as we shall 
see it may easily lead to a wrong physical picture of the contraction process. 
On the other hand we cannot simply exclude the region R < x ; for the 
determinant (1.9) is here g = - Ri sin20, i.e. it remains finite and negative 
in the whole domain R > 0. In fact the Schwarzschild singularity is only a

(1.21)
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coordinate singularity which can be removed by suitable coordinate trans­
formations. This was shown already in 1933 by Lemaître4 who introduced 
a Gaussian system of coordinates which has a singularity at R = 0 only. 
Contrary to the Schwarzschild system the Lemaitre system of coordinates is 
not stationary. It has even been shown by Serini and by Einstein and 
Pauli5 that no non-singular solutions of the field equations for empty space 
exist that are stationary and for which p44 - 1 + a/r for r -> oo .

Now one could think of repeating the Oppenheimer-Snyder considera­
tions with the curvature coordinates replaced by the Lemaître coordinates 
in the outer space, in which case the reference points would be moving like 
freely falling particles both in the external and in the internal system of 
reference. Still this would not be quite practical; for the initial velocities 
of the reference points in the Lemaître system are not adapted to the initial 
conditions of our problem. Therefore we shall now try to introduce one 
global system of coordinates in which the matter is constantly at rest and 
where b is given by (1.14) throughout space-time.

The initial distribution of matter at t = 0 is described by

7i°(r, 0) =/z°(r, 0)c2 (1.22)

which may be regarded as a given function of r that vanishes for large values 
of r. Since the matter is initially at rest we have for t = 0 and arbitrary r 

dh°
A°(r’0)" äT(r’0) = 0- (1-23)

In our system of coordinates the metric (1.3) is throughout of the form

ds2 = a(r, t) dr2 + R(r, t)2dti2 - dt2. (1-24)

The reference points (r, 0, 9?) = (constants) are moving as freely falling 
particles and inside the matter the numbers (r, d, cp) are simply fixed labels 
of the different matter particles, r = 0 corresponding to the centre of the 
matter. According to (1.13) with b = 1 the time variable t is equal to the 
time t0 of standard clocks at rest in the reference points, and inside the 
matter t is simply equal to the proper time of the matter particles. The form 
(1.24) of the metric is unchanged under arbitrary transformations

f = /-(r) (1.25)
of the radial coordinate.

The matter tensor Tf is again of the form (1.16) and the field equations 
(1.4) consist of three independent equations only:
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Gf = O, G} = O, G*  = x/i°. (1.26)

For given initial conditions they are just sufficient to determine the three 
unknown functions a(r, /), R(r, /) and h°(r, t). In view of (1.23) we are 
looking for solutions a and 7? that are stationary at t = 0, i.e. for which the 
partial time derivatives of first order are zero at t = 0. In particular we 
require

7ï(r, 0) = 0. (1.27)

By a suitable transformation of the type (1.25) we can always arrange it 
so that

R(r, 0) = r (1-28)
i.e.

R'(r, 0) = l. (1.29)

With the expressions for Gtk following from (1.24) the field equations (1.26)
are

(1.30)

where dot and dash denote partial derivatives with respect to t and r respec­
tively.

Multiplication of (1.30) by RR' /a yields

d ,
— (R 21 a) = 0 dr 1 ’ (1.33)

which shows that R'2/a is a function of r only. If we denote this function 
of integration by 1 - ^(r) we obtain

If2
a =----------- .

1 - v(f)

Introduction of this expression for a into (1.31) gives

2RR + R2 + ^(r) = 0.

(1-34)

(1.35)
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Thus

which shows that R R2 - is a function of r only; but this function

must be zero for all r on account of the initial conditions (1.27), (1.28). Hence

= Ä[27rä + R2 + y>(r)] = 0

)

and from (1.35)
R2 + = rip/R

R = - ry/2R2.

(1.36)

(1-37)

By means of (1.34) and (1.36) the field equation (1.32) may be written

R2R'
xh°(r, /). (1.38)

Since (r^)' is time-independent it follows from this equation that 
xh°(r, t)R2R' is a function of r only, say

xh°(r, 0 R2R' = 3r2Â(r). (1.39)

This is in accordance with the conservation equation (1.17) since

| — g = R2 |/aôsin 0 = R2R'sin 0 /|/1 — y>(r) (1.40)

from (1.24) and (1.34). The function A(r) is obtained by putting t = 0 in
(1.39) and by using the initial conditions (1.28), (1.29) which gives

2(r) =
xh\r, 0)

3 (1-41)

Thus Â(r) may be regarded as a known function of r given by the initial 
distribution of matter. The energy density 7i°(r, f) at any time is, by (1.39) 
and (1.41),

A°(r, 0
3r2Â(r)
xR2R'

r2h\r, 0)
R2Rr

= /z°(r, f)c2. (1-42)

If we introduce (1.39) into (1.38) we get the following differential equation 
for the function y(r):

(ry>)' = 3r2A(r), (1.43)

From (1.10), (1.14) and (1.34) it follows that y>(r) in any physically mean­
ingful case must lie in the interval
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^(r) < 1 . (1.44)

Thus ry) =*  0 for r = 0 and by solving (1.43) we obtain
r r

y)(r) = -J*r 2Å(r)dr = r22(r)---- J*  r3Å'(r)dr (1-45)

o o

which determines y)(r) uniquely for a given initial distribution of matter.
When 7?(r) has been determined by (1.45) we can solve the differential 

equation (1.36) for R(r, f). It is easily verified that the solution corresponding 
to the initial condition (1.28) is given by

R(r, /) = rC(u) (1-46)

u = t\'y)lr2 (1-47)

where the function 
equation

C(u) of the variable u is a solution of the differentiel 

1
C(u)

1 (1-48)

with 

From (1.48) we obtain
C(0) = 1.

and by differentiation

C'(u) = ±
i 1 - C(u)

C(u)

'flie solutions of (1.50), (1.49) arc

or

T u = j|//r£zrfC^/C(1„C) + tan-i|/L_c

T u = ]/C(l - C) + cos-yc = |/C(1 - C) + - - sin_1[/C,

(1-49)

(1.50)

(1.51)

(1.52)

(1.53)

where the signs here correspond to the signs in (1.50).
The graphical picture of the function C(u) of u is a cycloid with the para­
metric representation
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C = y(l + cos?;), u = ±(t] + sin?;). (1-54)

We have now obtained the complete solution of our problem in a global 
system of coordinates Sm that is Gaussian and in which all parts of the 
matter are constantly at rest in the corresponding system of reference Rm- 
In Sm the metric in 4-space is

R'(r, f)2

2. Discussion of the Solution

In a contraction process starting from a state of rest at t = 0 the solution
(1.55) is regular everywhere in a region of r and t for which u in (1.56) 
lies in the interval

0 < u <-. (2.1)2 V 7

The corresponding values of the parameter ?; in (1.54) and of C(u) lie in 
the intervals

c/.s2 = — - dr2+ R(r,t)2dQ2-dt2. (1.55)
1 - V<r)

Here y(r) is determined by the given initial distribution of the matter through
(1.45) and R(r, t) is given by (1.46) — (1.54). Thus

R = rC(ii), u(r, f) = ü = j/ip/r,

r 2tp

R = r C'(ii)ù = j/^C'(u), 

R' = C(u) + rC'(u)u'.

(1.56)

For simplicity we shall assume that A(r) is a never increasing function of r. 
Then r

Jr3 * * *2'(r)dr<0 and R' > 0. (1.57)

o

The matter density at any time is given by (1.42), and the naturally 
measured distance from the centre of a fixed point in the matter is from (1.12)

(1.58)
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In this region
0 < g < 71, 1 > C(n) > 0.

and we have to use the lower signs in (1.52), (1.53). Further

R'(r, /) > 0, R < 0

from (1.56) and (1.57), and
Æ = rC < r.

71
However for u — we have

2

(2.2)

(2-3)

(2-4)

(2-5)

C(u) -> 0, C’(n) R 0. (2-6)

Thus for any fixed value of r in the interval 0 < r < co the metric becomes 
singular after a finite time ts(r) measured on a standard clock at rest in Rm-
This time is given by

71
ll(r> #«) = 2 (2-7)

or from (1.47)

^(r) = |Z— (2-8)
2 1 V^(r)

which goes to infinity for r -> oo (comp. (2.13)). According to (1.40) the 
quantity |/— g is proportional to R2R' and from (1.56), (1.57) and (2.3) 
we have

which shows that l/ — g goes to zero as C3/2 for

dealing with essential singularities in this limit, and it has no physical mean­
ing to extend space-time beyond the region defined by (2.1). From (1.42) 
it follows that the proper mass density at any point inside the matter with 
constant r goes to infinity for t -> ts(r). This is accompanied by a singularity 
in the metric that spreads outward into the empty space outside the matter 
according to the equation

R2R' = r2 (2-9)

u -> —. Therefore we are
2
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(2.10)

or

(2.12)> 0

-► co (comp. (2.21)). At any time t < ts(r)

(2.13)
where

(2.14)a = 3

r& < a

(2.17)

ù
i u

which is constant in time. As we shall see now the constant a, which also 
may be written

71

m = 2

u(r, Z) =]/rpt/r = |

from (1.56) and 1(1.57). Vs ->0forr
the metric is regular for all r. There are no coordinate singularities in Sm- 

For an insular system of the type considered here the function h°(r, 0) 
or A(r) is zero in the empty space outside the matter, say for r > r&. In this 
region we get from (1.45) and (1.41)

y(r) = a/r

fi(r, f) = 0. (2.11)

By differentiation of (2.10) we get for the velocity with which the singularity 
propagates

(2.15) 

on account of (1.44). The naturally measured spatial volume element is

. R2R' sin 0
dV = I y drdOdcp = y ab R2 sin 9 drd9d(p = --------— drdQdtp (2.16)

J*  r2A(r)dr = — J J J ^°(r> 0)r2 sin 9drdOdtp 

o

is a constant which has a simple physical meaning. For a real physical 
system we must have

I 1 - V<r)

which for constant (r, 9, cp) and (dr, d9, dcp) goes to zero for t -> ts. However, 
from (1.42) the total proper matter energy is

H° = JJJ h°(r, t)dV = j j j A (r> 0) ) sin OdrdQd(p

4rtp3/2
.

(2.18)
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represents the total energy of the system, i.e. the total energy of matter phis 
gravitational field.

In any asymptotically Lorentzian system of coordinates the total four- 
momentum Pi of an insular system is given by6

Pi = lim - y^n;_r2sinO dOd(p (2.19)
r-> oo C j

where the integration is extended over a large sphere f of radius r0. n2 is 
a normal unit vector in the outward direction and is the v. Freud super­
potential.7 For r > l’b we get from (1.56), (2.13), (2.3)

R = r C(u), zz = f|/a/r3, ù = | a/r3

u = - 3u/2r, 7^' = C(u) + |Ul//^-C ,

B = -(/a/rh/i - 1 = - \/(x/R) - x/r

and from (2.12)
vs = - ii/u = ^-|/a/r = Al xlr-

3zz 3%

(2.20)

(2.21)

It is seen that u -> 0 in the limit r -> go for any constant t, and a Taylor 
expansion of the function C(zz) for small u gives by (1.49)—(1.51)

C(u) = 1 - |u2 + O(zz4) 

R'(u) = 1 + fzz2 + O(zz4).
(2-22)

In calculating Pi in (2.19) we shall only need the asymptotic expression of 
gik entering in in which terms of order zz2 = t2a/r3 can be neglected. 
In this approximation we have C = 7?’ = l,7? = r and we get for the symp- 
totic form of (1.55)

dr2 
ds2 =-------- - + r2dQ2 - dt2 (2.23)

1 — a/r

which is time-independent. For r -> go this goes over into the Minhowski 
line element written in polar coordinates. Therefore introducing spatial 
coordinates (x, y, z) that are connected with (r, 0, y) in the same way as 
Cartesian and polar coordinates in a Euclidian space, we obtain an asymp­
totically Lorentzian system of space-time coordinates
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= {.r, y, z, t]

15

(2.24)

in which the expression (2.19) can be safely applied. In these coordinates 
the metric tensor of the line element (2.23) takes the form

a /1 \
gtk = T]ik + ~nmk + (2.25)

where rjik is the Minhowski tensor and

(2.26)

0(11r2) is a term of order 1 /r2 which does not give any contribution 
to the integral (2.19) in the limit r -> oo .

With gik given by (2.25) the superpotential is easily calculated. Neglecting 
terms of order 1 /r3 we obtain

and from (2.19)

(2.27)

~ <V xc
- {P. - H/e}. (2.28)

Thus the total momentum P of the system is zero and the total energy H is

(2.29)

A comparison of this equation with (1.21) showrs that the constant a in 
(2.13), (2.14) or (2.18) is identical with the Schwarzschild constant.

So far we have not made any assumption about the initial distribution 
of the matter, except that A’(r) < 0 and Â(r) = 0 for r > ry. Let us now 
consider the case where A(r) is equal to a constant 7.0 for r < rc < i'b, i.e.

In the inner region r < rc we obtain from (1.45), (1.56)

y; = Â0r2, R = rS(t), S(t) = C(u),

u = |/â0/, ù = |/Â0, il = 0,

R = rS, R' = C(u) = S(t)

(2.30)

(2.31)
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and the line element (1.55) takes the simple form

ds2 = S(t)2
dr2

1 - V2
+ r2d&2 - dt2.

In the same region we get from (1.42)

A°(r, /)
3r2Â0
xr2S3

h°(r, 0)
5(03

(2.32)

(2.33)

and the singularity occurs simultaneously at all points inside rc at the time 

ts = tî/2|/â0. (2.34)

From (1.58) we get for the naturally measured distance

f dr C ( I z0 t) . < ,— \cr(r, t) = 5(0 —----------- = —7 sin 1(|/20r). (2.35)
|/1 - V2 I Â)

For constant r this distance decreases steadily in our case to the value zero 
for t -> ts, which shows that we have contraction of the matter when C’(u) 
is negative.

If we make the transition from the constant value Âo of Â(r) for r < rc 
to the value Â(r) = 0 for r > rb sufficiently smooth in the interval rc < r < rb, 
the components of the metric tensor in (1.55) will be continuous and differ­
entiable in the whole region of space-time with t < ts(r), even if r& - rc is 
very small. However, it should be remarked that in the limit r,_ -> rb, where 
2(r) is a step function at r = rb and therefore

Âor^ = a/r&, (2.36)

the quantities ii in (1.56) and hence R' and a in (1.34) are discontinuous 
at r = rb. According to (1.38) this is directly connected with the disconti­
nuity of 7i° at this point. The relation (2.36) between and r& is a good 
approximation also for finite rb — rc provided that

(r& - rc) / r& « 1 ■ (2-37)
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3. Curvature Coordinates

According to (1.55) the area ol' a sphere of constant r and I is equal 
to 4% R2 and the “curvature radius” R is a function of r and t given by

Mat.Fys.Medd.Dan.Vid.Selsk. 30 no. 7.

R = R(r, t) = r C(u) = r C ( l\/ip I r2). (3-1)

We are now looking for a system Sc of curvature coordinates

Xi = {R, 0, <p, T} (3.2)

in which ds2 is of the form (1.19):

ds2 = AdR2 + R2dQ2 - BdT2. (3.3)

To this end we have to find a transformation

T = (p(r, t) (3.4)

which together with (3.1) brings (1.55) into the form (3.3). This is brought 
about by choosing (p(r, t) as a solution of the partial differential equation 

(1 - ^(r))ç/(r, /) - RR'(p(r, t) = 0. (3.5)

In fact, from (3.1) and (3.4) we obtain by differentiation and by solving 
for dr and dt

dr = ((pdR - RdT) I (R'tp - RtpA I
(3-6) 

dt = (R' dT — (p'dR) I (R’ÿ — R(p') •

When this is introduced into (1.55) it is seen that the terms containing 
dRdT cancel, on account of (3.5), and ds2 takes the form (3.3) with

R’2(p2 — ç/2(l - y)
(1 — ip)(R'<p — ÏRp')2

B = fl,2(i - - fl2)
(i — ip){R'(p — Rq'y2

Eliminating cp' by means of (3.5) and using (1.36) we obtain

1 1 — w
------ r- , B = .1— rip IR (p\l — rip IR)

(3-7)

(3-8)

In the system Sc the metric tensor is more singular than in the system 
Sm of section 1 and 2. Besides for

R = 0 (3-9)
2
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which is the essential singularity (2.11), A and B are singular also at

R = rip (3.10)

and for R < rip, the conditions (1.11) are violated since

A < 0, B < 0. (3.11)

In empty space, where (2.13) holds, the singularity (3.10) is identical with 
the Schwarzschild singularity at

R = a. (3.12)

From the form (3.3) of ds2 in Sc one woidd be inclined to draw the 
wrong conclusion that the essential singularity (3.9) occurs at the centre of 
the matter only. It is true that R = 0 at the centre r = 0; but from (1.46) 
it follows that R is also zero for r 0 whenever C(zz) = 0, i.e. along the 
whole curve (2.7) which also concerns points outside the matter. If we put 
t = 0 in (3.5) we obtain by (1.27)

<p'(r, 0) = 0 (3.13)
or

ç?(r, 0) = constant

It is convenient to choose the value of this constant equal to zero, i.e.

(p(r, 0) = 0 (3.14)

for then the time variable T in the system Sc is zero for all events at t = 0 
the time coordinates T and t coincide at the origin T = t = 0.

In the empty space outside the matter, where ip = a/r, the solution of 
the differential equation (3.5) with the initial condition (3.14) is given by 

9?(r, 0 = /[ 1 a/r + 2[ a(r - a)tan 1
r - R

R~

+ 2alog
I R(r — a) + |/a(r - R)

|/r I R - a I

(3.15)

where R(r, t) is the function of r and t given by (3.1) and | R - a | is the 
absolute value of R - oc, i.e.

R — oc for R > oc
(3.16) 

oc — R for R < oc.

Partial differentiation of (3.15) with respect to t and r gives after a somewhat 
lengthy calculation using (2.20) and (1.52)
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1/1 — a/r , RR'
----- , <P = -7=

1 — a IR |/1 - a/r(1 — a/ /?)
(3.17)

which shows that (3.15) is a solution of (3.5) with ip = x/r. Further since R = r 
for t = 0 it also satisfies the initial condition (3.14). Since r > r& > a in the 
outer space and R < r the function T = cp(r, t) is real and positive for t > 0 
and arbitrary r. For R -> x this function diverges logarithmically. It is this 
singularity in the time transformation (3.4) that causes the coordinate sing­
ularity of the metric in Sc at R = x.

With 99 given by (3.17) and rip = x the quantities A and B in (3.8) 
reduce to the Schwarzschild expressions

(3.18)

in accordance with Birkhoff’s theorem. In a region of space-time where 
R > x and A and B positive, the system Sc furnishes the simplest and most 
convenient description of the motion of particles and light signals. This is 
above all due to the fact that the system of reference Rc corresponding to 
Sc is rigid. According to (1.12) the naturally measured radial distance a is

(3.19)

which is time independent and by (1.13) the time r0 of a standard clock 
at a fixed reference point in Rc is

r0 = T[/l — a) R. (3.20)

However in a region where R < x the expressions (3.19), (3.20) have no 
physical meaning. The reason for this becomes clear when we consider the 
motion of a point of constant (/?, 0, cp) relative to the ‘rest system’ Sm of 
the matter which is described by the equation (3.1) with constant R. Thus 
it moves radially outward with the velocity

jR [/(ripIR) - |/(a/7?) - a/r
R' ~ R' = ÏÏ'_ (3.21)

on account of (1.56) and (2.20). On the other hand we get from (1.55) for
an outward moving light signal for which ds2 = 0

2*
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(3.22)
L

(3.23)

and we have according to (2.20), (2.22) and (3.21)

(3-24)« I-
R

dr 
which is smaller than

<7/

dr
C = li =1, R = r » a, — 

dl

for R < a. Thus in the region R < a the reference 
R

points of Rc are moving with super light velocities so that it is impossible 
to attach real measuring instruments to these points. This explains why the 
expressions (3.19), (3.20) are meaningless in this domain. On the other hand, 
if r is very large compared with a the quantity u2 = 72a/r3 will during a long 
period of time be small compared with 1. In this region

a/r « 1, ii2 = 72a/r3 « 1

Thus, in the region of space-time (3.23) which covers the larger part of the 
outer space during a long time the systems of reference Rc and Rm coincide.

4. Radial Motion of Free Particles and Light Signals

On account of the just mentioned “unphysical” motion of the system 
of reference Rc for R < <x it is preferable to describe the motion of free 
particles and light signals in the system Sm with the metric (1.55). The 
simplest solution of the equations of motion for a free particle is given by

(r, 6, 9?) = (constants) . (4.1)

In terms of the radial curvature coordinate the motion is described by (1.46) 
with constant r:

R = r C(u) = r C (/[/ip I r2). (4.2)

Thus, R is a steadily decreasing function of the time t measured on a standard 
clock following the particle. For dr = 0 we get from (3.1) and (3.4)

dli = Rdt, dT = ipdt. (4.3)

In empty space this gives by (2.20) and (3.17)

dli = - |/(a/R) - a I rdt, (4-4)
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dR ^(a/B) - a/r

dT j/1 — a/r
(4-5)

Thus, the “velocity” dR I dT of the particle in Sc is positive for R < a in 
spite of the fact that R is steadily decreasing. This is due to the circumstance 
that T is decreasing along the time-track of the particle for R < a as is seen 
from (4.4). Further since T -> co for R -> <x observers in Sc might come to the 
conclusion that the value R = a never can be reached if R initially is larger 
than a, although we know that this happens in a finite time measured on the 
standard clocks.

For r = r& where ip = oc/rb we get from (4.2)

Rb = rb C(ub) = rbC[t\/(x.lrl) (4-6)

which describes the motion of the boundary of the matter. Rb decreases from 
the value rb > a. at t = 0 to the value Rb = a in a finite time fa(r&) determined 
by the equation

C(^(r&)|/a/r&) = a/r&- (4-7)

Introducing this value for C into (1.53) we get for this time

fa(rb) = r6|/l - a/rb + - sin_1|/a/r&j. (4.8)

Somewhat later at the time

ts(rs~) = rb\/rblcc- (4.9)

where C = 0 the surface of the matter runs into the singularity (2.11) which 
then spreads into the outer space with the velocity (2.21). The time interval 
txs in which Rb of the surface decreases from the Schwarzschild value a to 
the value zero is

txs = ts(rs) - ^(rs) = rb\/rblccsin a/rb) - rb\ 1 -a/rt,. (4.10)

As an example we consider a spherical system of incoherent matter 
with the mass and radius of a typical galaxy, say M = lO45^/?? and rb = 1023 
cm. Then a — 1017 cm from (1.21). According to (4.8) such a system would 
collapse through the Schwarzschild radius after a time

tx(rb)/c ~-4 1016 sec « 160 million years. (4.11)

At this time the individual stars in the galaxy would still be far from touching 
each other, so that the approximation of incoherent matter would seem not
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to be too unrealistic. Provided the galaxy is non-rotating this phenomenon 
should actually occur after the comparatively short time (4.11). After a 
further very short time tas/c our model predicts a total collapse of the matter 
into the singularity. For a/rb « 1 (4.10) reduces to

tas/c = a/2c ^19 days (4.12)

in our case; but in the later part of this process the assumption of zero 
pressure is of course highly unrealistic. During the first 10 million years 
of the contraction process the quantity u2 = t2a/r^3 is only about 0.01. Thus, 
we are in the region (3.23), where the systems Rc and Rm coincide for the 
whole outside space r > r&. During the time interval

Za(r0) < t < ts(rb) (4.13)

the system represents a “black hole”, i.e. no information can be transferred 
from the surface of the matter to regions of space-time where R > a. In 
order to study this phenomenon a little more closely we need only to con­
sider the motion of light signals through empty space; for no real signal 
can move faster than light. From (1.55) and (2.13) we obtain for the radial 
velocity of light, since ds2 = 0 for such signals,

(4.14)

with R' given by (2.20). Hence

(/r\ l/l - air
dt)~ *-ir- (4-15)

where the upper and lower signs hold for signals that are moving in the 
outward and inward directions, respectively, relative to Sm, i.e. relative to 
the matter. The changes of the curvature coordinates R and T along the 
time-tracks of the signals are by (4.15), (3.4) and (3.17)

(±7? + |/l

(4.16)

or using (2.20)

— a/r)/(I — a/Ä),

— = ± |/ 1 - a I r - |/ (a / R) - a jr

(4.17)

(4.18)



Nr. 7 23

c/— - (|/1 - «//i). (4.19)

The solutions of the two differential equations (4.15) are given implicitly 
by the equations

F±(r, 0 = C± (4.20)

where C+ and C_ are constants of integration and F+ and F_ are the following 
functions of r and t :

\R — a 
F±(r, 0 “ ± 99(r’ 0 - F - a log — (4.21)

In fact, by differentiation of these functions we get

(4.22)

(4.23)

which shows that the functions F±(r, /) are integrals of the motion of the 
light signals.

When the signals start at the point r0 at the time t0 the motion of the 
outward and inward going signals are described by the two equations

F±(r, 0 = F±(r0, Q (4.24)
that also may be written

± (T - T.) - (R  R,) - « log - 0 (4.25)
I Fo - a I

from (4.21) and (3.4). Two signals starting at the times f0/c and (f0 + g?/0)/c 
from the point r0 will arrive in the fixed point r at the times t[c and (/ + dt)/c 
respectively, where the relation between dt and dt0 is obtained by differ­
entiation of (4.24):
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F±(r, t)dt = F±(r0, t^dt^
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(4.26)

If the light at the start from r0 has the (standard) frequency r0 and the 
wave length 20 = c/v0, the interval between the emission of successvie 
wave crests is dt0 = c/v0 = 20 and the corresponding interval for their arrival 
in r is dt = c/v = 2 where 2 is the observed wave length at r.
Then, we obtain the relative shift of the spectral lines

2 — 20

from (4.26) and (4.23) which give

2
(4-27)

±JZ1 - «/r0 - tip

1 - a/^o
1 - a/R

± |/1 — a/r — 7?
(4.28)

The function F+ given by (4.21) and (3.15) contains a term — 2alog — 
so that a

F+ -> co for R a (4-29)

while F_ remains finite in this limit, since the logarithmic terms in F_ cancel.
Let us now first consider the case of an outward moving signal, where 

the upper signs hold in the preceding formulae. If /0 lies in the interval

since I according to (4.15) with the plus sign never becomes negative.

(4.13) and r0 is equal to rb we have 7?0 = 7?(r0, t0) < a and F+(r0, t0) is a 
finite constant. Then it follows from (4.24) and (4.29) that R can never 
become equal to a during the motion, i.e. the signal can never penetrate 
into a region where R > 0. At the first moment this is somewhat surprising,

Ö
However the outward velocity is zero for R' = <x> which happens when 
u = Z|/a/r3 = %/2. Thus the signal does not stop before it runs into the 
singularity (2.7) where r and t have values (r*,  f*)  connected by the equation

u*  = /:i:| a/r;3 = %/2. (4.30)
For these values also

77*  = 7?(r*,  f*)  = 0 (4.31)

which shows that R must decrease along the time-track of the signal from 
the value 7?0 to the value zero while r increases from r0 to r*.  This is in 
accordance with (4.18) since dR / dt is negative all the time for R < a. Also 
it follows from (4.19) that dT/dt > 0 in this case, i.e. T increases from the 
value to the value
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T*  = /*)  = f*|/l  - a/r*  + 7r|/a(r*  - a) (4.32)

obtained from (3.15) by putting Æ = = 0 . Further we have by (4.25)
with R = R*  = 0

T- = To - Ro + a log -- (4.33)
a - Ro

which is indeed larger than To for 7?0 < a. The equations (4.30) and (4.33) 
with (4.32) determine the place r*  and the time t*  at which the light ray 
runs into the singularity.

For r0 = rb and t0 < ta(rb) we have Ro > a and the outward going light 
signal will proceed to arbitrarily large values of r and of R = r C(/^/a/r3). 
This follows at once from (4.18) and (4.15) which show that dR/dt and 
(dr I dV)L are positive all the way. An observer sitting at a point with

r » a, R » a. (4.34)

will observe a line shift given by (4.28). With the value for R given by (2.20) 
and with (4.34) we obtain

ÂMo _ |/l-a/r.+ |/(«W-«/r. (4 35)
1 - a/^o

The light is shifted towards the red. For /0 « fa(r&) so that u02 = Z02a/r03 
« 1, i.e. in the region (3.23) we have from (3.24) Co = 1, Ro = r0 and the 
formula reduces to the well-known red shift formula

Â = Â0/|/l -a//?0 (4.36)

for a source at rest in the Schwarzschild system of coordinates. In general 
A > Ao| 1 - a/r0/(l - oc/Rq) > A0/|/l - <x/R0 which shows that the light is 
always redshifted in this case.

Let us now consider the case of ingoing light where we have to use 
the lower signs in the equations (4.17)-(4.28). Since F_ is regular every­
where in the physical region t < ts(r), there is nothing to stop the signal from 
going from a place with Ro > <x right through to the surface of the matter 
sphere even if Rb is smaller than a at the time of arrival. This is also seen 
from (4.18) which shows dR / dt < 0 for all R in this case. Thus the Schwarz­
schild wall R = a separates space-time into two regions I and II with R < a 
and R > a respectively. While information can pass freely from II to I, no 
information about happenings in I can ever reach the region II.

Now consider an observer on the boundary of the sphere r = r& which 
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at the time t < ts(rb) receives light from a distant star with r0 » a and 
Ro » a. Then we get from (4.28) and (2.20)

2 1 — a I Rb
, = ,-----z (4.37)
4o |/1 - a/r& - |/(a//?&)- a/r&

where Rb is the value of R at the time t of reception at r&. When this time 
is small compared with ^a(r&) in (4.8), i.e. in the region (3.23), we have 
Rb = rb and (4.37) reduces to

2 = 20|/l - oc/Rb, (4.38)

the light is shifted towards blue. In the limit t -> £a(r&) where Rb ■+ x we get 
from (4.37)

2 -> 220|/l - x/i-b. (4.39)

For x/rb(( 1, as in the example on p. 21, this corresponds to a redshift. 
Under the same assumption we have for tx(rb) < t < ts(rb), where Rb < x, 
the redshift formula

2 = 20 = 20(l + /a/7?b). (4.40)
y<x/Rb- 1

5. Continuation of the Solution of Section 1 to t < 0

In the preceding sections we have considered a contraction process 
starting from a state of rest at t = 0 corresponding to the initial conditions 
(1.23), (1.27). However, it is clear that (1.55) with (1.56) is a regular solution 
of Einstein’s field equations in the whole region

- fg(r) < t < ts(r) (5.1)

with U(r) given by (2.8). In this region the parameters u and T] in (1.54) 
take on all values in the intervals

71
— — <

2
71

U < , — 71 < T) < r].
2

(5-2)

During the time interval
- U(r) < / < 0 (5-3)

the quantity
u = t^yj/r2 (5-4)
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goes from —%/2 to 0 and C(u) increases from 0 to 1. Thus in the interval 
(5.3) we have instead of (2.3)

(5.5)

corresponding to an expansion process. From (1.56), (5.5) it follows that 
R' is still positive in the interval (5.3), but

R > 0 (5.6)

in contrast with (2.4). More precisely we have

R(r, - /) - R(r, /), K'(r, - f) - R'(r, t) |
i (5-7)

R(r, - f) - — R(r, t). I

In empty space we have in particular from (5.7) and (2.20)

A(r, 0 = |/(a//?)”a7r (5-8)

for t in the interval (5.3).
The system described by this solution corresponds to a spherical distri­

bution of incoherent matter which jumps out of a singularity at t = - ts(r) 
for which u = - n/ 2, R = 0 and expands with decreasing speed until it comes 
to rest at t = 0, after which it performs the contraction process described 
in the preceding sections.

For t > 0 the function <p(r, 0 was defined by (3.15). We extend the 
definition to negative t by requiring that ç>(r, 0 is an uneven function of t, i.e.

9?(r, - f) = - <p(r, 0.

Since R is an even function of t this gives

9?(r, 0 = t\/1 - a/r — 2|/a(r - a)tan_1L/—^— 

r — a) + |/a(r — 7?

|/r I R — a I

for t in the interval (5.3). From (5.9) we obtain

<^(r, - 0 = <p(r, t), <p'(r, - 0 = - <p'(r, 0.

]//?(
2 a log

(5.9)

(5.10)

(5.11)

Since also R is an uneven function of t it follows that the expressions (3.17) 
are valid also for negative t. Therefore, in empty space the transition to 
curvature coordinates is also in the region (5.3) effected by the transforma- 
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tions (3.1, (3.4) with ep given by (5.10), and the metric in Sc is the same 
as in (3.3) (3.18). Since T > 0 for t > 0 and arbitrary r we have T < 0 
for t < 0 from (5.9).

All the considerations performed in the preceding sections for t > 0 can 
now be repeated for the region (5.3). The motion of the boundary relative 
to Sc is again given by (4.6) with negative t. Il starts at t = - ts(rb) with 
Rb = 0 and increases to the value Rb = a for t = - ts(rb) after which it 
increases further to the value Rb = r& at / = 0.

The motions of outward and inward going light signals are still deter­
mined by (4.15) and (4.16), but in view of (5.8) we have instead of (4.18)

— = ± ]/1 - a/r + |/(a/R) - a/r (5.12)

for t < 0. The solutions of the equations (4.15) are again given by (4.24), 
(4.25) where the functions F±(r, /) are determined by (4.21) and (5.10) for 
t < 0, but in this region F+(r, /) is everywhere regular, while

F_ -+ oo for R -> a (5.13)

Therefore, light emitted from a point r0 = rb on the surface of the matter 
sphere at the time t0 < 0 can freely move to the outside region with R > oc 
even if Rb < a at the time of emission /0. This also follows from (5.12) with 
the upper sign since dR I dt is positive for all R. On the other hand, ingoing 
light starting at an event point (r0, f0) with Ro > a, where F_(r0, /0) has a 
finite value, can never penetrate into a region where R < oc on account of 
(5.13). This is also seen from (5.12) with the lower sign, since dR I dt = 0 
for R = oc and dR / dt > 0 for R < a.

Thus, during the time interval

- ts(rb) < t < - tx(rb) (5.14)

where Rb < oc, the system is a “white hole”. Il can emit light into the outside 
world, where r and R are large compared with oc, but an observer on the 
sphere cannot during the period (5.14) receive any light from a distant star 
with r0 » oc, Ro » a. On the other hand for t > — tx(rb) an observer on 
the sphere can receive any message from the outside world since R > oc and 
dRIdt < 0 all the way along the time-tracks of ingoing light signals.

The relative line shift z is in the whole region (5.1) given by (4.27), 
(4.28), but for negative t the quantity R in (4.28), as given by (5.8), has the 
opposite sign of the expression in (2.20) valid for t > 0. Therefore, light 
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of wave length 20 emitted at r0 = rb at a time t0 in the interval (5.3) will 
be observed by a distant observer at r 7? )>> a with the frequency 2 given by

2 |/1 - a/r0 -/(a/770) - a/r0
f 1 /p (5-15)20 1 oc/Ro

which is the reciprocal of (4.37). Thus, if the light received at a place r = rb 
at a time t > 0 from a distant star is redshifted, the light emitted from the 
time-inversed point (r&, - /) as observed by a distant observer will be blue- 
shifted and vice versa.

Similarly, for light from a distant star with r0 7?0 » a that is received 
at a point r = i'b at a time in the interval

— Za(r&) < f < 0 (5.16)
where Rb > <x, we have

2 1 - a/Rb
~ -,----- ----- . (5.17)
20 |/ 1 - a/rb + |/ (a/Rb) - a/rb

This expression is the reciprocal of (4.35), i.e. the light received from a 
distant star at the surface of the sphere is blueshifted.

If the matter inside the sphere is uniformly distributed, the metric is 
given by (2.32) for r < rc, which is identical with the Friedman solution for 
a spatially closed universe with constant positive curvature. According to 
the conventional cosmological ideas there is nothing outside this closed world, 
but the question now arises if the observable part of the universe in reality 
could be the inner part of a “meta galaxy” immersed in a much larger 
closed or open universe. In this respect the usually assumed values for the 
radius and average mass density of the universe are strangely suggestive. 
For a model of the type considered in this section with a radius of 1010 
light years and density 10_29gm/cm3 the Schwarzschild constant would be 
of the order of magnitude of the radius, and it is conceivable that the observ­
able universe at the present time is a “white hole”, so that no information 
from distant stars outside the meta galaxy can penetrate into the interior. 
However, we shall not enlarge upon this picture here.
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Conclusion

In this paper we have reconsidered in more detail the problem of the 
collapse of incoherent matter under the influence of its own gravitational 
field. It serves as a simple illustration of the general theorem of Hawking 
and Penrose according to which singularities will develop both inside and 
outside the matter after a comparatively short time as measured on standard 
clocks at rest in a system Sm in which the matter is constantly at rest (com­
pare the example mentioned on p. 21). Not only does the density of matter 
go to infinity, as would be the case also in Newton’s theory of gravitation, 
but in Einstein’s theory the metric of space-time itself becomes singular at 
the finite time ts(r). In section 2 it was shown that the coefficients of dr2 
and dQ2 in ds2 in general have the following limiting values for t -> ts(r) 
and constant r:

a -> ce , R2 -> 0

and for the determinant g we found

<7 0 for t -> ts(r).

The singularities in question arc essential singularities that cannot be 
removed by any coordinate transformation.

In section 1 it was emphasized that the determinant g must be negative 
in any case which has a physical meaning. Thus the occurrence of the just 
mentioned essential singularities means that the system according to Ein­
stein’s theory after a finite time runs into an unphysical state — a kind af 
nirvana where the time stops and the notions of space and time lose their 
meaning. It is hard for a physicist to accept this and one would rather con­
clude that Einstein’s theory, which so admirably accounts for all phenomena 
in the case of normal gravitational fields, breaks down in cases where the 
components of the curvature tensor of space-time are extremely large.
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Introduction

Intermolecular positional correlation forms the core of a description of 
fluid structure (see e.g. Frisch and Lebowitz 1964, Fisher 1964, Rice and 
Gray 1965, Cole 1967, Egelstaff 1967, and, for experimental data, Frisch 
and Salsburg 1968). The response of a molecular fluid to light is largely1 
determined by the response of an isolated molecule and by the equilibrium 
structure of the unperturbed fluid. It can therefore be described in terms of 
molecular correlation. Molecular refractive index theory results in a pertur­
bation series for the refractive index m, which can be interpreted as describing 
a series of elementary scattering processes (Yvon 1937, Mazur 1958, Bul- 
lougii 1968, Bullough, e.a. 1968, to be referred to as 1, Hynne 1970, to 
be referred to as II). A general term of such series involving p molecules, 
contains a (/i-l)-fold integral having a particular p-body correlation func­
tion2 as a weight factor. This correlation function gauges the contribution to 
the refractive index of a multiple scattering process with p scattering events 
from p molecules in given configuration. Clearly, the character of the many­
body response (as condensed in in) depends decisively on the set of cor­
relation functions.

In this paper we consider correlation functions that appear as 
weight factors in a theory of the refractive index of a molecular fluid form­
ulated in terms of a ‘screened’ intermolecular interaction (II). Although 
entirely microscopic3, the screened theory has interesting macroscopic con­
sequences: from the theory we have derived (Hynne and Bullough 1972, 
to be referred to as III) a generalized form of a dispersion relation, previously 
obtained by Onsager (1936) and Böttcher (1942) by purely macroscopic

1 Namely in the approximations of a quasistatic linear response theory and the polarization 
diagram approximation (I).

2 We use the term ‘correlation function’ to denote an arbitrary combination of distribution 
functions (compare e.g. Hill 1958). We deviate from the terminology in our previous papers 
on refractive index theory which did not distinguish distribution functions from other correlation 
functions.

3 The screened theory is initially completely equivalent to the fundamental unscreened 
theory (Bullough 1968, I, II) but the ‘bulk approximation’ (see II) is required to reach the 
final, translationally invariant form.

1*  
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arguments. We have also obtained (Hynne 1974) an expression for absorp­
tion lines, at variance with simple two-body results, but agreeing with line­
widths from coupled oscillator theory (Holtsmark 1925). The physical 
significance of these results shows that the screened formulation is physically 
very natural and motivates a study of the functions. A more concrete 
incentive is the necessity of knowing the asymptotic behaviour of the func­
tions for a proof of convergence in the refractive index theory.

Correlation of p molecules can be expressed by the p-body (reduced) 
molecular distribution function, which gives the probability density of con­
figurations of any subset of p molecules. (See e.g. Hill 1958, Frisch and 
Lebowitz 1964; compare also section 2 of this paper). The p-body correlation 
function

^[p] = ^123 . . • p = p (Xl, X2, X3, . . . , Xp) (1-1)

considered here is a function of the p points in space xi, x2, . . . , xp, and 
can lie expressed as a combination of distribution functions of orders g < p. 
Although the set of distribution functions is perhaps the most natural choice 
other sets of functions, notably the set of Ursell functions,4 may serve equally 
well as basis for a description of intermolecular correlation. It is the purpose 
of this paper to characterize the set of functions in relation to the two 
fundamental sets of functions, the set of distribution functions and the set 
of Ursell functions.

4 The Ursell functions can be defined without reference to distribution functions. For this 
and for a more general discussion of Ursell functions see in particular Fergus 1964; see also 
the brief review in section 2 below. Notice, however, that there exists a different usage of the 
term ‘Ursell function’; see e.g. Fisher 1964 and Uhlenbeck and Ford 1962 and compare the 
original paper by Ursell (1927).

In the following section we introduce generalized correlation functions 
and define functions by an equation emerging from the refractive index 
theory (II). The most important part of the paper is a derivation in section 3 
of an explicit expression (2.12) for the functions in terms of generalized 
Ursell functions and a recurrence relation (2.11) in terms of generalized 
distribution functions. Section 4 contains a discussion of some properties of 
W functions, and section 5 an application of the result (2.12) to the original 
physical problem. The short section 6 summarizes the results.
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2. Definition of <27 functions

Rather than using ordinary distribution functions we shall work in terms 
of generalized distribution functions

= ^123 • . . p = <e(*l)  Q(Xï) q(x3) . . . Q(xp))a,v (2.1)

which are averages of products of the ‘instantaneous’ density of molecules

(2-2)

taken at different points. The instantaneous density o(x) depends on the 
configuration of molecules5 (specified by the positions xj) of a member of 
the grand canonical ensemble. The system is homogeneous, and the average 
density n = <{?(x))av is independent of x. In equation (2.1) and below we 
use subscript indices to denote position variables.

The functions generalize the ordinary distribution functions of 
statistical mechanics (see e.g. Mill, 1956) to include self-correlations, and 
the first few functions are (see e.g. Lebowitz and Perçus 1963; ^1234 is 
exhibited in IIynne 1974, p. 452)

^1 = n

^12 = H2gl2 + 77(512 (2-3)
^123 = U3 <7123 + 772((512 (723 + ^23 (/31 T <531 <?12) + 71(512(523

In equation (2.3) nVg[P] is the ordinary p-body distribution function 
and ôij = ö(xi-Xj') denotes a delta function representing a self-correlation.

Although ordinary correlation functions are perhaps appropriate for 
most applications, generalized functions are in many ways simpler than 
ordinary ones. In many-body optics it is possible to exploit the simplicity of 
the generalized functions to great advantage by formally expressing radiation 
reaction in terms of self-correlations (I). This definition is made initially in 
the (more fundamental) ‘unscreened theory’ (I), but it is carried over, with 
new significance, into the screened theory. (See II and, in particular, III). 
The W functions therefore emerge from the screened theory with all self­
correlations included, and it is natural to express them in terms of the 
generalized distribution functions.

8 The refractive index theory (T, II) applies only to optically isotropic molecules for which 
orientational correlation is irrelevant.
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The function '^[p] is the average value of the instantaneous (configur­
ational dependent) function recursively defined by the relation

= e(*i)

6 Below we shall take sets of indices like [p] and Q to denote ordered sets. Here, the order­
ing is immaterial because both and °l/are symmetric in all their variables.

7 Here and below ‘Ursell functions’ and ‘distribution functions’ denote generalized func­
tions unless the contrary is expressly stated.

p-i
'>7/in = n - Y J'/in W^123---p 123 - - - p-1 Up Z 123------Q^ff+l-.-p

3 = 1

(2.4)

which emerges from an integral equation in the refraction index theory 
(equation (2.6) of 111).

We easily lind the first few functions directly from the definition (2.4):

It is remarkable that these functions are identical with the corresponding 
generalized Ursell functions, which can be defined as (1, Stell 1964, Lebo- 
witz and Perçus 1963)

^[p] = 2 TT ^Q- (2.6)
TIE 0>pQEn

In equation (2.6) the sum is taken over the collection of all partitions 
of the set of indices [p] = (1, 2, 3, ... , p).6

The generalized Ursell functions may be obtained from a simpler 
recurrence relation, derivable from equation (2.6) (compare Perçus 1964):

^[p] = S le0 (2.7)
Q

in which the sum is taken over all subsets Q of [p] containing 1, and [p]-Q 
denotes a set difference witli ordered elements (compare footnote 6 and 
below). The p-body Ursell function7 can be characterized (Perçus 1964) as 
the part of the correlation between p particles not contained in lower order 
functions. This characterization is natural in view of the definition (2.6), 
and it manifests itself in the asymptotic properties of the Ursell functions. 
Let the variables of W[P] be partitioned into two sets with indices () and

= lp] — Q and let (Iqr denote the minimum distance between the two sets:
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(Iqr = min | xt - xj |, i e Q, j e /?. (2-8)

For any such partition the Ursell function tø[p] satisfies

^[p] “* 0 for dQR -+ co. (2.9)

This is the cluster property of the Ursell function (compare Uiilenbeck and 
Ford 1962), which follows (compare Kahn and Uhlenbeck 1938) from 
equation (2.6) and the factorization of distribution functions

^[p] &Q&R f°r dQR -+ co.

The asymptotic behaviour (2.9) makes the Ursell functions very suitable for 
discussion of convergence of integrals, a property we exploit in section 5.

However, direct evaluation shows that

^1234 =^1234 + ^13^241 (2.10)

so despite the striking coincidence al the lowest orders, the class of func­
tions differs from the class of Ursell functions. Nevertheless, the results (2.5) 
and (2.10) suggest that the two classes of functions are simply related.

Whereas it is relatively easy to obtain expressions for lower order 
functions directly from (2.4), several features of the defining relation (2.4) 
complicate the derivation of a general expression for ^[pj, whether in terms 
of distribution functions or in terms of Ursell functions: Equation (2.4) is 
a non-linear manv-terms mixed recurrence relation in the instantaneous 
functions ^in involving the averaging operation in addition to arithmetic 
operations.

In the next section we shall solve this problem by deriving the following 
two relations

2 IT (2.11)
sey’p se«

2 IT (2.12)
cey

which independently determine W [p}~. equation (2.11) is a pure recurrence 
relation for ^[pj in terms of distribution functions whereas equation (2.12) 
is an explicit expression for ^[pj in terms of Ursell-functions.8 The sums in 
equations (2.11) and (2.12) are taken over certain sets of partitions of the 
index set [p] = (1, 2, 3, . . . ,p) defined in the following section. Indeed, the

The result (2.12) has been quoted in II: here we present the derivation of the result. 
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core of the derivation involves essentially just manipulations with partitions 
of index sets, and it would be a futile notational complication to formulate 
the derivation in terms of the functions. We therefore base the derivation 
on two lemmas on ‘ordered partitions’ which we derive in the following 
section. Since this arrangement may obscure the motivation for the various 
steps of the derivation, we start with a brief outline of the argument.

3. Derivation of Equations (2.11) and (2.12)

To derive (2.11) we first obtain an expression for a product of functions 
q(x) (compare equation (2.1)) which upon averaging yields equation (2.11). 
The structure of the terms of the sum in equation (2.11) can be ascertained 
by scrutinizing equation (2.4). Here, we prove the result by induction. For 
this proof we use equation (2.4) and a lemma showing how the set S^p+i 
of partitions of [p + 1] can be generated from the set S^p of partitions of [p]. 
From equation (2.11) we obtain (2.12) by comparison of equations (2.6) 
and (2.11) using another lemma which states that any partition of [p] can 
be uniquely decomposed into a certain subpartition of a partition belonging 
to y’p. We first derive the lemmas.

We consider partitions of the set

[p] = (1, 2, 3, . . . , p) (3.1)

of the first p positive integers. The relevant partitions are all characterized 
with reference to the numerical order of the integers.9 We shall also need 
to consider ordered subsets of [p] as well as partitions of such subsets. We 
therefore take [p] to denote the naturally ordered set, and we shall under­
stand that any set of integers (whether it is element of a partition or not) 
is ordered according to magnitude unless the contrary is stated. By an ordered 
partition of an ordered set we simply mean a partition in which the elements 
are ordered within each set of the partition, whereas the sets of the partition 
arc not ordered among themselves. (Nevertheless, the ordering induces a 
relation among the sets, which we exploit below).

It is very helpful to represent partitions by diagrams. Let the elements 
1, 2, 3, . . . , p of the basic index set [p] be represented by consecutive ver­
tices of a regular polygon of p sides. A partition of [p] is then represented by 
a collection of polygons (which may include points and lines as degenerate

9 The ordering arises from a chronological ordering of scattering events in the refractive 
index theory (II).
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cases), each having the representative points of a set of the partition as ver­
tices. The sides of a set-polygon connect vertices corresponding to cyclic­
ally consecutive elements of a set. Figure 1 c exemplifies the diagram repre­
sentation by showing the representation of the partition

{(1,4, 7), (2. 8), (3), (5, 6)) (3.2)
of the set [8].

From any partition of [p] containing a set Q with more than one element 
we obtain a particular subpartition by dividing Q into a non-empty, proper,

(b) (c) (d)

The composite partition (c) is neither an s-partition nor a c-partition; but it can be obtained 
from the s-partition (d) which is its basis by replacing the sets of (d) by definite c-partitions 
of these. This representation of the composite partition (3.2) as a subpartition of its basis is 

the sc-decomposition of the partition.

Figure 1. 
tions:

Diagrammatic representations of partitions exemplifying the various types of parti-

(a) The s-partition (3.3)
(b) The c-partition (3.5)
(c) The composite partition (3.2)
(d) The basis (3.4) of the composite partition (c).

ordered subset of consecutive elements from Q and the ordered subset of the 
remaining elements from Q. We call this special subpartitioning an s-process 
(where s stands for ‘sequence’). We define an s-partition of [p] as any parti­
tion that can be obtained from [p] by repeated use of s-processes. By defini­
tion, [p] is itself an s-partition.10 The diagram representation permits an 
especially simple characterization: A partition is an s-partition if and only 
if it is represented by a diagram in which sides of different polygons do not 
intersect. This is a direct consequence of the definition of s-partitions. Figure 
1 a illustrates the property for the s-partition

{(1,3,8), (2), (4, 7), (5,6)}. (3.3)

The diagram representation shows that we may replace the term ‘consecutive’ 
by ‘cyclically consecutive’ in the definition of the s-process.

10 We shall not distinguish between the one-set partition {[p]} and the set [p] itself.



10 Nr. 8

We denote by 9? p the collection of all s-partitions op of [p], and by 
the subset of -9P consisting of the partitions cr° in which the integers 1 and p 
belong to the same set. We obtain a mapping fp from into the set ^p+i 
of all partitions of [p + 1] by defining the image fp(op) of a partition ap g 9>p 
as the partition obtained from op by adjoining p+ 1 to the set in op containing 
the integer 1. Since 1 and p +1 are cyclic neighbours in [p + 1], and since 
ap G y'p, fp(ap) belongs to -V’p + i and hence to ^+1. Conversely, for each 

+ i £^p + i there is a unique original element under f obtained simply by 
removing the integer p + 1 from <t°+1. Thus, fp establishes a one-to-one cor­
respondence between 9P and

We now find a prescription for generating the whole collection 5%+i 
from 9p + 1 and hence (by fp) from 9p. We obtain 9p + ]_ as the collection 
of the partitions in 9p+1 and the partitions obtained from each of these 
partitions by employing one s-process in all possible different ways giving 
partitions in which 1 and p+1 belong to different sets. All the partitions 
obtained this way belong to 9p+] by construction, and each element ap+i of 
«9%+ 1 is generated exactly once. If ffp + i G 9p + p this is obvious. If o-p + i y?° + 1, 
it arises precisely once from the unique partition obtained from o-p+i by 
uniting the sets containing the elements 1 and p + 1: The resulting partition 
is indeed contained in5^>+1 since 1 and p +1 are cyclic neighbours in [p + 1 ]. 
We refer to the rule for obtaining 9p+i from as lemma 1.

Consider diagrams of partitions as two-dimensional point sets. We say 
that two sets of an ordered partition are connected if the diagram of the 
partition contains a continuous curve joining points of the polygons that 
represent the two sets.11

11 ‘Connectivity’ is not used in the graph-theoretical sense: the diagrams are not graphs 
in the narrow sense of this term (compare e.g. Berge 1962).

Clearly, connectivity is an equivalence relation and hence gives rise to 
a classification of the sets of a partition. From an arbitrary partion % we 
obtain another partition which we call the basis of %, by replacing each 
connectivity class by the union of all sets in the class. The basis of a partition 
has a diagram in which no polygon-sides intersect: it is an s-partition. For 
example, the basis of the partition (3.2) (exhibited in figure 1 c) is

{(1,2, 4, 7, 8), (3), (5,6)} (3.4)

which is an s-partition as figure 1 d clearly shows. An s-partition is its own 
basis.

A partition in which all sets are connected is said to be connected and 
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is called a c-partition. Compare the diagram in figure lb which represents 
the c-partition,

{(1,4, 7), (2, 6, 8), (3, 5)} (3.5)

of the set [8]. The set of all c-partitions of [p] is denoted p. The basis of 
a c-partition of [p] is [p] itself (compare footnote 10).

Any partition determines its basis uniquely and can be recovered from 
this by a unique, partitioning of the sets of the basis into connected parti­
tions. Therefore, any partition can be uniquely decomposed into a c-sub- 
partition of an s-parlition. We refer to this result as lemma 2. It shows that 
c-parlitions are in a sense complementary to «-partitions.

The sets -9"p and %?p appearing in equation (2.11) and (2.12) are now 
well defined, and we procede to prove these relations. Assume12

Q1Q2Q3 ... QP = 2 II ^Sj (3.6)
;>i

where the sum is taken over all partitions or = {Si, S2, . . . } g Sfp, and Si 
is the set containing the integer 1. Multiply both sides of equation (3.6) by 

and eliminate all products qp+i by equation (2.4). By employing 
lemma 1 we then find that the resulting expression has the form (3.6) with p 
replaced by p+1, and the validity of equation (3.6) follows by induction. 
From equation (3.6) we obtain the recurrence relation (2.11) by taking the 
average value.

Consider now equation (‘2.6). By lemma 2 we can write the sum over 
0P in this equation as the sum over £fp of the sum over all c-subpartitions : 
The existence of the sc-decomposition of an arbitrary partition guarantees 
that all terms of (2.6) are included in the double sum, and the uniqueness 
of the decomposition ensures that each term is included only once. All terms 
of (2.6) having a given basis <jeS^p factorize alike, corresponding to the 
sets S of o'. We can therefore rewrite equation (2.6)

3+1 -2 n 2 n (3.7)
oE^p SE(J yE^(S) CEy

in which ^(S) denotes the collection of all connected partitions of the ordered 
set S.

To prove the expression (2.12) equate the right hand sides of equations 
(2.11) and (3.7) and assume equation (2.12) to be valid for all orders smaller 
than p. All terms in the sums over S^p except those corresponding to <7 =[pj 
then cancel10 leaving the expression (2.12) at order p, and the general validity 
of equation (2.12) follows by induction.

12 We simplify the notation when no confusion can arise.
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4. Discussion of Results

The derivation of equation (2.12) in the preceding section reveals that 
the two equations, (2.11) and (2.12), are in a sense complementary with 
respect to equation (2.6). The functions may therefore be naturally char­
acterized as being intermediate between the distribution functions and the 
Ursell functions. Both equations have a form comparable to that of equation 
(2.6), but in equation (2.11) the functions appear similar to Ursell func­
tions, whereas in equation (2.12) they appear similar to distribution functions.

Equation (2.12) is an explicit expression for the W functions. It shows 
that these are sums of products of Ursell functions. To illustrate the structure 
of the W functions we have displayed these up to order six, in ligure 2, 
using a diagram notation related to the one used for partitions: A diagram 
with dashed lines represents a product of Ursell functions, and a polygon 
covering a set of vertices corresponding to an index set Q indicates the 
presence of a factor tflq. The terms of the sum for 'SQpj appear in classes 
within which the terms only differ by cyclic permutations or by complete 
reversal followed by cyclic permutations of the indices. (Compare the dis­
cussion of symmetry below). For clearity and to save space we therefore 
represent the terms of a class by just one diagram with unnumbered vertices, 
and indicate the number of terms in a class by a coefficient to the diagram. 
For example, there are six terms in two classes at order five, namely

^12345 = ^12345 + ^135 ^24 + ^124 ^35 |
(4.1) 

+ ^<235 ^<14 + ^134 ^25 + ^245 ^13- I

Equation (2.11) gives the ^-functions in terms of distribution functions 
only implicitly. A simpler recurrence relation is readily obtained from equa­
tion (2.11):

= leQ. (4.2)

Here the sum is taken over all subsets Q of [p] containing 1, and {Q, Qi, 
Q2, . . . } is the smallest13 partition of [p] in which each set Qj consists of 
a single chain of consecutive integers. Evidently, the partition is determined 
uniquely by Q.

Equation (4.2) is directly comparable to equation (2.7). The only differ­
ence of form is that the single function ^[pj-Q in the equation with Ursell

13 That is, the partition with the least number of sets.
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^[51

Figure 2. Diagrammatic representations of the first six Oÿ functions.

functions is replaced by a product of <3 functions covering the set [p] — Ç 
in the equation with functions.

It is plain from equation (4.2) that the explicit expression for tø[P] in 
terms of distribution functions must have the form

^[Pl =“ S ca TI (4.3)
sea

The coefficients co can be obtained from equation (4.2). This is easy for 
partitions with few sets. In particular, the coefficient to the constant term 
^1^2 • • • = n'P of ^[pj (corresponding to £ = {(1), (2), . . . , (p)}) is
found to be c>- = ( — l)p_1(p)p-i Ip !, which (apart from sign) is known as 
a Catalan number (Sloane 1973). The constant terms of the W functions 
are of special interest in the refractive index theory (II) where they give rise 
to contributions which produce the ‘cavity field factor’ of the dispersion 
relation (see section 2 of III). But the general coefficient ca depends on the 
detailed structure of the partition a in a rather complicated way,14 and this 
fact detracts from the usefulness ’of the explicit form (4.3). The simple

11 In the corresponding expression for the Ursell functions, the coefficients are (-1)?_1 
(<?—!)!, determined solely by the number q of sets in the correponding partition. 
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expression (2.12) in terms of Ursell functions is the natural representation 
°f ^[p].

Both distribution functions and Ursell functions are symmetric in all 
variables, i.e. ^[p] and ^/[pj are invariant under all permutations of [p]. 
In contrast, for p > 3 ^[p] is only invariant under permutations belonging 
to the dihedral group Dp, a proper subgroup of order 2 p of the symmetric 
group of degree p (and order p!). The group l)p consists of all cyclic per­
mutations of [p] and of these followed by complete reversal of order (which 
e.g. takes (1, 2, 1, p) into (p, p — 1, . . . , 2, 1 )). The elements in DP
are precisely the permutations that carry the polygon representing [p] into 
itself (except for the numbering). It is clear from the explicit form (2.12) 
that &[p] is invariant under permutations from Dp: These map the set of 
connected partitions onto itself (except for ordering) and hence just cause 
a rearrangement of the terms in the sum on the right hand side of equation 
(2.12). (The Ursell functions are symmetric in all variables). On the other 
hand, there can be no further symmetry: For any permuation P I)p of [p] 
there exists al least one pair (i,j) of not cyclically consecutive integers which 
is mapped by P into consecutive integers. Therefore, P maps the c-partition 
{(/,/), [p] “ (*>./)}  into an «-partition, and consequently, there exists at least 
one term in the sum on the right hand side of equation (2.12) which trans­
forms under P into a term not contained in the original sum (and not can­
celled by other terms).

15 The ‘only if’ part of the statement disregards possible accidental zeros for special con­
figurations within the two sets of points.

A consequence of the incomplete symmetry of &[p] is that the asymptotic 
behaviour of ^[pj depends on the limit considered. Let the variables of ^[p] 
be divided into two sets as discussed above equation (2.8), define (Iqr by 
equation (2.8), and define

c/q = max I Xj - xj I, z, ; e Q. (4.4)

Equations (2.9) and (2.12) then show that

^[pl-> 0 for cIqr ->oo, (Iq, (4-5)

if and only if15 () consists of cyclically consecutive integers of [p]. In partic­
ular, 0, when the distance from one point to all the other points goes
to infinity. These asymptotic properties of functions are important in 
refractive index theory as we shall see in the following section.

In closing this section we note a straightforward extension of the results.
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The ty functions arc generalized correlation functions in the sense that they 
include all self-correlations. By simply omitting these self-correlations we 
obtain a corresponding set of ‘ordinary’ functions which evidently satifies 
equations analogous to (2.11), (2.12) with the ty and ty functions replaced 
by ordinary distribution functions and Ursell functions. Obviously, the 
ordinary functions also share the symmetry and the asymptotic behaviour 
(4.5) with the ty functions.

5. ty functions in Refractive Index Theory

We now analyse a problem of convergence arising in refractive index 
thory, in which the special structure of the ty functions plays a peculiar role.

In microscopic refractive index theory (e.g. Yvon 1937, Bullough 1967, 
I) the macroscopic response of a manv-body system to an external electro­
magnetic field is naturally described in terms of elementary scattering pro­
cesses taking place in vacuum. In this theory, the response related to bulk 
porperties is mixed at all orders in multiple scattering with irrelevant sur­
face effects associated with molecular description of reflection and diffraction 
(I). Mathematically, the surface elfect appears through integrals over a finite 
region, which diverge when taken over all space.

We have systematically eliminated the surface effect to all orders in 
multiple scattering and obtained a translationally invariant theory, the 
screened theory (II), by a reformulation of the theory in which the elementary 
scattering processes take place in the medium (compare Bullough 1965, 
1967). This elimination involves extension of integrations to all space, a 
procedure that demands a proof of convergence. It is this problem we con­
sider here.

A typical integral to be analysed (from the term at order p in multiple 
scattering) is 

F.2-F23 • • F(P-i)Pexp(im ko • (xp-Xi))^i23 pdxzdx^... dxp (5.1)

in which ko is a fixed vector of length ko, and the refractive index m is taken 
to be real.16 The tensor F;t = F(xj, x*;co)  is given by

16 The choice Im (m) = 0 is consistent with translational invariance, but means neglect 
of external scattering. This is a logically necessary but unphysical feature of a translationally 
invariant theory. But the final equation (of which (5.1) is a part) admits of no purely real solution 
for m (compare especially Hynne 1974). Thus, the translationally invariant form of the screened 
theory contains a logical inconsistency (compare Bullough 1965, 1967). We shall not discuss 
this question further here, however.
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~ „ „ /exp (Åmko r)\F(x, x'; co) = (w + m *o u) -------- ~------ ), r = |x- x | (5.2)
y m-r ]

where U is the unit tensor. It describes the propagation of radiation from 
a dipole in a medium of refractive index m. It has the asymtotic form

~ « exp(iniA'or)F(x, x';m) ~ /<“(U-rr) - - kor » 1, (5.3)
r

where r = (x—x')/r.
For m real, F is long range, and the convergence of the multiple integral 

(5.1) is ensured neither by the F tensors alone nor by the W functions alone. 
(Compare the discussion of the asymptotic behaviour of the W functions in 
the preceding section). It is through the special combination of Urscll func­
tions and F tensors the integrals converge. As we shall see, the convergence 
is only just secured, however.

Express by equation (2.12) as a sum of products of Ursell func­
tions, and consider a typical term. The structure of such a term is best 
visualized by the diagram for the product of Ursell functions in which the 
F tensors are indicated by heavy lines; a coincidence of a dashed and a heavy 
line is indicated by adding a cross to the heavy line (compare figure 3 a). 
Because of the short range of the Ursell functions, we can integrate first over 
the relative coordinates of each cluster (set of particles covered by one Ursell 
function) with one particle of the cluster held fixed. Hereby we are left with 
integrations over relative positions of clusters. We can assume that the F 

tensors that connect particles in different clusters can be replaced by F 
tensors connecting the fixed particles of the clusters. (This approximation is 
good when the clusters are far apart, and certainly proper for discussion of 
convergence). The crucial point now is, that every cluster is connected with

Figure 3. (a) Diagram representing an integral of the type shown in equation (5.1) for p = 8 
with <3/f8] replaced hy a typical term <^126 <^/34S <^f57 of its expansion (2.12). (b) A schematic 
representation of the same term exposing its structure of clusters (represented by shaded circles 
in (b) and by dashed polygons in (a)) connected by ‘external’ F tensors (represented by heavy 

lines). 
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every other cluster by at least three independent chains of F tensors. This 
fact is illustrated in figure 3 b for the term shown in figure 3 a. Here, clusters 
are indicated by large shaded circles, and F tensors going between clusters 
are shown whilst F tensors going inside a cluster are omitted. Any twro of 
the three clusters in figure 3 b are connected by precisely three independent 
chains of F tensors. (This exemplifies the ‘worst case’ : in the term corres­
ponding to the partition exhibited in figure 1 b, e.g., which also has three 
clusters, there are four independent chains between any pair).

An immediate consequence of this structure of multiply connected sets 
of clusters is that the integral over all positions of any one cluster with all 
the remaining clusters fixed in arbitrary configuration, converges. This al­
most proves the convergence of the multiple integral (5.1). The remaining 
step of a complete and rigerous proof is complicated by the fact that the 
individual integrals are not in general absolute convergent. This means that 
the process of integration over all space must be specified, for example as 
a limit of integration over a finite region; it is then still necessary to specify 
the passage to that limit. Such a proof is outside the scope of this paper.

As conclusion we may say that the result (2.12) forms an excellent 
basis for analysis of convergence of the multiple integral (5.1). This analy­
sis strongly suggests that the multiple integral does converge although the 
convergence is shown to be conditional and extremely slow. Certainly, the 
transformation to the translationally invariant screened theory has elimi­
nated all the manifestly divergent integrals that appear in the unscreened 
theory when the integrations are extended to all space.

6. Summary of Results

The p-body correlation function

^[Pl = ^123 . • . p = ^p(Xi, X2, X3, ... , XP) (G.l )

is a function of p variables (points in space). It is symmetric in the variables 
corresponding to the dihedral permutation group Dp, i.e. it is invariant under 
cyclic permutations of the variables as well as under complete reversal of 
the order of the variables. It is a generalized correlation function in the sense 
that it includes all self-correlations, but all results can be reinterpreted in 
terms of ordinary functions.

The set of tø functions is related to the set of generalized distribution 
functions on the one hand, and to the set of generalized Ursell functions on 
the other hand, by the pair of equations (2.11), (2.12), the main result of 
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this paper. This pair of equations shows that the tø functions can be said 
to be intermediate between distribution functions and Ursell functions. Each 
of the two equations independently determine the tø functions: equation 
(2.11) is a recurrence relation for the tø functions in terms of generalized 
distribution functions, and (2.12) is an explicit expression in terms of general­
ized Ursell functions. The two equations involve sums over either of two 
distinct sets of partitions of the index set [p] that marks the variables of the 
functions. These partitions are defined in section 3, and the derivation of 
equation (2.11) and (2.12) is based on an analysis of ‘ordered partitions’ 
resulting in a theorem (lemma 2, stated below equation (3.5)) on decomposi­
tion of partitions. The functions of orders up to six are displayed in ligure 
2 in a diagram notation explained in section 4. The first three tø functions 
are identical to the corresponding Ursell functions.

The explicit expression (2.12) is utilized to prove (with qualifications) 
that characteristic asymptotic properties of the functions just secure con­
vergence of integrals appearing in refractive index theory.
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Synopsis

The present study is the first in a series of three attempting a critical assessment of the 
status of classical electron theory.

By means of a simple idealized experiment the relationship is exhibited between the 
retardation of physical actions and the requirement of energy conservation on the one hand 
and the occurrence of radiation damping on the other. From this example it emerges, that 
radiation phenomena are characterized by a certain feature of wholeness, even within the 
domain of classical physics.

The mechanism of radiation reaction is further analysed within the context of the clas­
sical Maxwell theory, where the phenomenon of damping - like that of electromagnetic iner­
tia - naturally originates in the mutual interaction between the various infinitesimal constitu­
ents making up any finite change. On this background the interplay between the various 
assumptions, underlying the attempts initiated by Dirac of incorporating the notion of an 
“ideal point charge’’ into the foundation of classical electrodynamics, is critically examined.

In the “point electron description” the phenomenon of damping has no natural place, 
although the proponents of this description have offered several arguments leading to the 
well-known expression for the damping. Closer scrutiny reveals, however, that these argu­
ments are at variance with the proper Maxwell theory and must be regarded as ad hoc as­
sumptions carefully chosen so as to achieve the desired result. In this connection it is em­
phasized that the problem of “acausalities” associated with the Lorentz-Dirac equation are 
by no means inherent difficulties in classical electron theory, but are procured only through 
the postulate that this equation represents the exact equation of motion for a point electron.

Printed in Denmark by Bianco Lunos Bogtrykkeri AS. ISBN 87 7304 047 9



§ 1. Introduction

In Classical Electron Theory, as based on the pioneering work of Abraham 
and Lorentz, the electron is conceived of as a minute spherical distribu­

tion of an in principle infinite number of infinitesimal electrified constitu­
ents. From the very beginning it was, of course, realized that an explanation 
of the stability of such a system was outside the purview of the Maxwell 
theory, but nevertheless the hope was entertained that once the stability was 
taken for granted, a consistent scheme could be developed in which empiric­
ally well established phenomena like emission of radiation, the presence of 
radiation damping and — perhaps — even the inertia of the electron were 
unambiguous consequences of the mutual interaction of the constituent cor­
puscles. Thus, fundamentally the classical electron is to be regarded as a sy­
stem of infinitely many mechanical degrees of freedom (in addition to the 
degrees of freedom of the field).

Within the framework of a non-relativistic description the reduction of 
the number of mechanical degrees of freedom to six, characterizing the 
mechanical phase of a single charged particle, presents no difficulties, 
amounting merely to the introduction of appropriate assumptions regarding 
the rigidity of the charge distribution. However, within a proper relativistic 
scheme this situation is radically different owing to the finite propagation 
velocity of all physical actions, referred to as “retardation”. Indeed, within 
the framework of the Maxwell theory, any charge distribution — however 
limited its spatial extension — retains the full complexity associated with a 
system of infinitely many degrees of freedom*.  This circumstance is especi­
ally conspicuous in the formulation of the detailed energy-momentum 
balance, where the energy-momentum tensor, not only of the electromag­
netic field but of the “mechanical” part of the system as well, presents the 
natural tool.

* A similar feature appears in quantum electrodynamics. Here the infinitely many degrees 
of freedom manifest themselves through excitations of the “electron field’’.

1*

An attempt to formulate a relativistic description of a point electron, 
characterized exhaustively by the parameters fixing its mechanical phase, 
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was initiated by Dirac1) in his well-known treatise “Classical Theory ol' Radiat­
ing Electrons’’, which was followed by several other contributions, notably by 
Feynman and Wheeler2) and by Rohrlicii3). Basic to these departures from 
the conventional scheme are the endeavours to express the equation of motion 
as well as the conservation laws as four-vector relations involving only the 
momentary velocity, acceleration (and higher derivatives) of the particle 
besides its phenomenologically introduced mass and the external force. 
Within such a scheme, however, the phenomenon of damping now poses a 
problem and can, in fact, only be treated at all on the basis of recipes speci­
ally concocted for that very purpose.

Surveying the numerous discussions in the litterature, it is hard to over­
look the presence of a certain confusion arising primarily from a lack of 
sufficient care in distinguishing between the rigorous consequences of the 
Maxwell theory on the one hand, and the conclusions — e.g. concerning 
acausalities in the equation of motion — reached by Dirac and his followers 
by transcending this framework, on the other.

The series of studies here undertaken represents an attempt to arrive at a 
clearer understanding in this respect. Part I, presented on the following pages, 
is concerned with the energy-momentum balance in processes where radiative 
phenomena are important, whereas part II, soon to be published, deals with 
the “mechanical’’ or “adiabatic” approximation and analyses from various 
angles the question of the transformation properties of electromagnetic energy 
and momentum. Finally, part III is intended to illustrate some of the general 
principles through the specific example of a charge in hyperbolic motion.

Although the discussion of consistency problems is an essential aspect 
of the present study, we have not followed the axiomatic approach, preferred 
by some workers, starting with rigorous definitions of concepts like radiation. 
Notwithstanding the intrinsic interest of such attempts, they appear to convey 
an unwarranted impression of freedom in the choice and definition of con­
cepts on which to base our description of nature. Thus, we have preferred 
to proceed by analysing some idealized examples which are simple enough 
to allow of a detailed analytical treatment and still sufficiently general to 
demonstrate typical features in the mechanism of the energy-momentum 
balance in radiation processes. This attitude towards the consistency problem 
was greatly influenced by the general lesson of quantum theory, which 
entailed a serious warning against a priori definitions of physical concepts.
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§2. Energy-Momentum Balance for Corpuscular Systems in 
Closed Processes

The concept of a field, possessing independent dynamical degrees of 
freedom and acting as mediator of interactions between material bodies, 
springs naturally from the attempt of basing the description of this interaction 
on customary mechanical ideas, even under circumstances when the re­
tardation of all physical actions plays an essential role. Thus, in electro­
dynamics, where such a program has met with a far-reaching success, the 
notion of propagating fields, carrying a well-defined amount of energy, has 
found a domain of unambiguous applicability, whereas in the General 
Theory of Relativity, which entails a certain renunciation with respect to 
the applicability of the usual mechanical concept of force, the attribution of 
energy to the gravitational field is in general ambiguous. Nevertheless, to 
the extent that ordinary mechanical ideas may also here serve as a point of 
departure, the field concept has the same status as in electrodynamics4).

For historical reasons, the field concept is often related to the rejection 
of the idea of forces acting at a distance. This view implies that also static 
electric or magnetic fields are considered as proper dynamical systems in 
which a well-defined amount of energy is localized, even though they have, 
of course, no independent dynamical role in the account of the energy­
momentum balance. This situation is essentially different, when time-varying 
fields are considered, since the question at issue now concerns the possibility 
of upholding the customary idea of conservation of energy and momentum, 
rather than a more or less justified prejudice against “action-at-a-distance”.

*

As a point of departure, let us recall the familiar account of the energy 
balance in electrostatic systems. Consider a charge Q, which is divided into 
a very large number, N, of small charge elements ôqa, situated at the positions 
7\z. The total energy of the system, defined as the external work required to 
build it up adiabatically, is then given by

IV _ 1 Y 

The feature to be noticed in this expression is the absence of the self-energy 
of the constituents. In fact, for increasing N, the self-interaction of the con­
stituents decreases relative to their mutual interaction and vanishes in the 
limit of a continuous charge distribution. Indeed, this feature is merely the 
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formal expression of the observation, already alluded to in the Introduction, 
that the atomicity of charge is a foreign element in the classical Maxwell 
theory. Within this framework, properties like electromagnetic self-mass or 
self-angular-momentum originates in the mutual interactions between the 
infinitesimal constituents of the system in question, whereas the constituents 
themselves, according to their very definition, possess no self-energy, self- 
angular-momentum or similar properties. It is essential to realize that this 
line of argumentation does not imply any resignation as regards the scope 
and domain of applicability of the classical Maxwell theory, but rather serves 
to remind us about the conceptual framework within which any consistent 
use of the theory must remain.

Rewritten in continuum language the expression (1) takes the familiar 
form ,

W = 7 I d.rQ(x)(p(x), (2)

where o(ir) is the charge density and (p(x) the potential, or expressed in 
terms of the electric field E (.r) :

W = -1 Jdæ E2(æ). (3)

Although the relation (3), in agreement with Pointings theorem, may be 
formally interpreted as the integral over an energy density, the derivation 
provides no basis for conclusions regarding the possibilities for an ascertain­
ment of the presence of energy localized in the field. On the contrary, eq. (3) 
must so far be regarded merely as a recipe for evaluating the total electro­
magnetic energy of the system.

As an illustration consider the contrivance recently discussed by Møl­
ler5), consisting of a small condensor suitably charged so as to cancel a 
given external electric field within the spatial domain between the plates. 
This example might convey the impression that, since the electrostatic field 
energy within the domain considered in this manner can be converted into 
mechanical energy without noticeable influence on the field outside the con­
densor, it has indeed been demonstrated that the energy in question was 
localized in the domain covered by the condensor. However, as must be 
evident from the beginning, electrodynamics provides no basis for such a 
conclusion.

Imagine for definiteness a small uncharged condensor which is slowly 
carried from infinity and placed at a distance R from a charge Q, assuming 
R to be large compared to the dimensions of the condensor, so that the
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Coulomb field from the charge Q within the plates may be approximated 
by a homogeneous electric field. Under these conditions the displacement of 
the uncharged condensor from infinity to the distance 7? does not require 
external work.

Next, in order to neutralize the Coulomb field inside the condensor, the 
plates are connected by a conducting wire, and since the two plates coinside 
with different potential surfaces, a current will flow through the wire until 
the appropriate charge has been carried from one plate to the other. The 
current may be utilized to drive a mechanical device, thereby converting 
the electric field energy into mechanical work.

The charge, q, on the condensor, after the compensation of the field, is 
given by

(4)

A denoting the area of the plates, and the total energy gained is thus

(5)

where d signifies the distance between the plates.
Suppose now that it is possible to neglect the field modification outside 

the condensor. Then, after having cut the conducting wire, one may remove 
the charge Q to infinity without performing external work, being in the 
end left with a charged condensor, from which the energy (5) could once 
more be gained. Thus, it is clearly necessary to take into account that after 
the original charging up of the condensor, the outside field is modified. In 
fact, the condensor behaves as a small dipole bound in the Coulomb field 
from the charge Q. The binding energy Acp can be estimated as

qQ
R + d

or by means of eqs. (4) and(5)

4cp = 2AU.

(6)

(7)

Instead of cutting the conducting wire before the removal of the charge Q, 
the connection between the plates could have been maintained, whereby the field 
between the plates would have been cancelled at each instance, implying the relation 
(4) to hold for every r during this process. When the charge has been removed to 
infinity, the condensor is discharged and the total energy gained is now given by 
eq. (5). Correspondingly, the force on Q now varies as
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since
(r + d)2 r5 4?r ’

qQ 2Q2 Ad

A Q2
4.-7 r2 '

Thus, as expected, the total mechanical work amounts to :

/<(r) dr = (9)

This example illustrates how the energy balance for electrostatic systems 
can be exhaustively accounted for in terms of the customary mechanical 
concept of potential energy without any reference to the field. Quite generally, 
within the framework of electrodynamics the impartation of energy to a static 
field is purely conventional in so far as the energy in question may alter­
natively be expressed in terms of the co-ordinates of the charged particles.

Quite a different situation is met with in the case of time-varying charge 
and current distributions. Due to the retardation of physical actions, the 
field now represents independent degrees of freedom of the total system, 
which can only be ignored or eliminated at the expense of giving up the 
notion of energy-momentum balance. As a simple illustration*  consider two 
particles of charge Q — originally at rest at a relative distance 2r$ —, which are 
moved simultaneously and symmetrically towards each other**  to a relative 
distance 2ry (ty < /y), where they stay at rest (see figure 1). If the process 
is carried out adiabatically, the external work performed equals the change 
in potential energy

If, however, the process is carried out in a finite time, the work required 
will, as a consequence of the retardation, differ from Wad-

Suppose that the duration of the process, At, is chosen so that

n - iy < cAt < ri + rf, (11)

* The following example was already discussed in reference 4. Since, however, it shall 
be utilized here for other purposes, it is reproduced for the convenience of the reader.

** Since the entire discussion is carried out within the framework of special relativity, 
the freedom to invoke the actions of arbitrary external forces is exploited throughout.
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which implies that the electromagnetic force on each particle due to the 
other one during the entire motion is given by the original static Coulomb 
field. In this case the work required to overcome the electrostatic repulsion
only amounts to*

(12)

The very fact that this work differs from the change in potential energy (10) 
faces us with the choice of either giving up the customary idea of energy con­
servation, or recognizing the existence of some non-conservative force acting 
on each particle, independently of the motion of the other since during the 
process considered no communication is possible between the particles. 
Within the customary mechanical framework the non-conservative character 
of this so-called “damping force” is interpreted as a manifestation of an 
independent set of degrees of freedom, with which the particles may interact 
and exchange energy, the damping force being just a phenomenological way 
of taking this interaction into account.

Reconsidering now the above process in this extended framework, we 
notice that the external work, Wd, required to overcome the damping force 
on each particle during the displacement must, for symmetry reasons, be 
the same for both particles and, according to its definition, independent of 
the motion of the other. Thus the total energy to be supplied is not given 
by eq. (12) but by the relation

* If the retarded interaction were replaced by a time-symmetric interaction, clearly, the 
work performed would also in this case equal Wad-
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(13)

where Wr is related to the hypothetical “radiation energy’’ &r by the 
requirement of energy balance

Hence :

(14)

(15)

Whereas this expression is still compatible with a complete absence of radia­
tion, corresponding to r = 0, evidently, &r and \\7r cannot both vanish. 
Furthermore, the fact that, according to the initial conditions, <pr > 0, implies 
that Wr is positive definite, reflecting the irreversible character of the process 
of radiation emission.

Face now the particular case in which the equality sign in eq. (11) 
holds, i.e.

cAt = i’i + Tf (16)

and introduce the average velocity
the relations

Jr
V At

Ar
9 ~ (zH)2

v and average acceleration g through

n - rf
c
rt + rf

9 n - rf
C (ri + rfy

(17)

Then eq. (15) may be rewritten in the suggestive form

So far no conclusions as to the individual value of Wr and 3'r can be 
drawn. However, since Wz>, as already noticed, is independent of the motion 
of the other particle, it may be determined by considering another process, 
in which only one of the particles is displaced along the same world line 
as before, whereas the other is kept fixed. Denoting by Er the energy trans­
ferred to the radiation field during this process, the energy balance now yields 
the relation :
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7’î + Vf
(19)

where W is given by eq. (13) as before. Hence it follows that

Er = Wd. (20)

Since the role of the fixed charge in this process is purely auxiliary, we may 
conclude that whenever a charge, Q, is displaced a distance Ar during a time 
At, being at rest outside this time interval, a net external work equal to 
Wd has to be performed*.

Furthermore, it follows from eq. (18) that**

Er = Wd >
Q2 g2 
c3 1 - P2/c2

At. (21)

The above example is well suited to exhibit the futility of attempts to 
achieve a pictorial representation of the energy transfer to the radiation field 
as an emission process localized in space and time***.  In fact, such a picture 
would entail that since a single charge during the displacement (the other 
being kept fixed) emits the amount of energy Er = Wd, —which, as far as 
the particle degrees of freedom are concerned, is irreversibly lost once the 
particle comes to rest again — it would emit the same amount of energy, 
even if the second particle were simultaneously displaced, since the first 
particle could only recognize this displacement after the completion of its own 
act of emission. Thus, the conclusion would be — in conflict with the result 
(15)—that the total amount of energy emitted equaled 2Wd, and further­
more, provided the original distance 2n is chosen larger than 2c At, that this 
energy, immediately after the particles had come to rest, were localized 
within two non-overlapping spherical shells.

Thus a proper account of the energy balance in the process considered 
cannot be given within the picture indicated but must start from the recogni­
tion that a radiation process, far from having the character of a localized 
event, manifests a modification of the field as a whole. Although at the

* Since only the Coulomb potential enters into the above example, it may appear puzzling 
how to carry through the argumentation in the Coulomb Gauge. The solution to this conundrum 
was confided to us by Jens Lindiiard. rjj

** In the non-relativistic limit minimization of the integral (2Q2/3c3) x2dt, subject to the 
J 0

appropriate boundary conditions, actually gives 8 times the value (21). However, considering 
more cunning contrivances involving several charges, it is easy to increase the lower bound of 
the inequality (21).

*** For a detailed exposition of such attempts, see ref. 3 & 6.
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termination of the displacement of a particular charge, a definite amount 
of work has been performed on this charge independently of a possible dis­
placement of the other, still the fraction of this supplied energy, ultimately 
to appear in the radiation field, is at this moment to a certain extent indeterm­
inate, being dependent on whether or not the second particle is actually 
displaced.

The preceding analysis has demonstrated how the combined require­
ments of energy conservation and retardation entails the existence of the 
phenomenon of damping for a single finite charge. Thus, a detailed account 
of the energy balance associated with the mutual interaction between the 
infinitesimal constituents of the charge, each of which suffers no damping, 
must necessarily substantiate this conclusion. Furthermore, the analysis 
suggests that the total damping acting on the charge may be pictorially 
represented as the accumulated effect of the continual lack of “adjustment” 
of action and reaction in the mutual forces between the corpuscles, brought 
about by the impossibility of instantaneous communication between them.

To trace the problem further back is clearly impossible within the frame­
work of the Maxwell theory, since it would amount to deducing the retarded, 
as opposed to the advanced, character of the electromagnetic interaction, 
a program, the very formulation of which would involve a contradiction in 
terms within a scheme which implicitly assumes the freedom to influence 
the behaviour of the charges or charge elements in question*.

* See in this connection the further remarks on page 32 fl.
** In the following x denotes the four-vector (x~, it) and a similar notation is employed 

for other four-vectors, the scale of length being chosen as the distance travelled by a light signal 
per unit of time. Also, for the sake of clarity all tensor indices have been suppressed, since it 
will be clear from the context whether matrix multiplication or scalar products are implied. 
Where ambiguities may occur, scalar products are indicated by a dot.

With the purpose of obtaining a quantitative expression**  for the damp­
ing, let us evaluate the total four-momentum to be supplied to constrain 
a system of electrified corpusles with a given total charge, to perform a cyclic 
process, where in the initial and final state the corpuscles are at rest in a given 
configuration. Since an adiabatic process is of no consequence for the problem 
at issue, we may for simplicity assume that this configuration is originally 
built up by adiabatically assembling the corpuscles from rest at infinity, and 
finally adiabatically decomposed by removing the corpuscles back to infinity.

The fact that a finite amount of energy-momentum has to be supplied 
at all in a cyclic process clearly reflects the limitations in the usual form of 
the law of action and reaction in situations where the retardation must be 
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taken explicitly into account. Indeed, Lhe total four-momentum P^1,2) which 
a corpuscle 2 via its retarded field communicates to another corpuscle 1 
during the process considered does not equal minus the four-momentum 
PR'1} which the first corpuscle via its retarded held communicates to the 
second. Instead, the generalized law of action and reaction may for a closed, 
cyclic process be expressed as

pi1,2) + pl2,1) = 0 (22)

where signifies lhe four-momentum communicated to the second
corpuscle via the advanced field of the first.

To demonstrate this symmetry, consider a single pair of corpuscles. The four- 
momentum communicated during the process to the first corpuscle via the 
retarded field of the second is given by

Pä’2) = f dx^&(x)s1(x'), (23)

where (x) denotes the field tensor corresponding to the retarded electromag- 
netic field generated by the second corpuscle, and

«l(x) = <5?1 J dr^x - x^)) UiCn) (24)

the charge current density associated with the motion of corpuscle one along its 
dxi

world line xi(r1); Uy = ---- . Similarly
dxi

P^’1}(x) = dx^d)(x)sz(x), (25)

where Jf'G)(x) denotes the advanced electromagnetic field generated by the first 
corpuscle.

Expressing and in terms of the currents s2(x) and Si(x) by means R A
of the retarded and advanced Green’s functions t2>R(x) and @A(x), and remembering 
that &R(x) = &A( — x), one obtains*:

Pg>2>+ PCjM) = dxdy{[dx@R(x - y)As2(y)] Si(x) + [dy^(y-x) Asi(x)]s2(y)}

= (h dxdy{[dx@R(x-y) A s2(y)]s1(x) + [s^x) A dx^R(x - y)]s2(y)} (26)

- 4re 0 dxdy[,s2(y) A s1(x)]dx^R(x - y), 

where the last equality follows from the identity

* For the antisymmetric tensor a.b. — a.b^ constructed from two four-vectors a and b, we 
employ the customary notation a A b.
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[a A b] c + [c A a] b + [& A c] a = O (27)

valid for any three four-vectors, a, b, c. Finally, taking advantage of the continuity 
equation for the currents, the expression (26) is immediately transformed to a 
surface integral, which vanishes by virtue of the boundary conditions*
p(l,2) . p(2,l) =

R A

- dxdy {s2(y)dx ■ (si(x)^(.r - y)) + sj (x)dy ■ (s2(y)R(x - y))} = 0.
(28)

It may be remarked in passing that this result may also be immediately obtained 
by variation of the translational invariant quantity

+ co

jj rfndrs^GrKri) - x2 (t2)) Ur (tj) ■ U2 (t2). (29)
— 00

Continuing the evaluation of the damping, it is next noticed that, since 
according to their very definition, the corpuscles suffer no damping, the 
equations of motion for two constituents are

ônhgi = + Ä<ext>

ôm2g2 = F™ + P2(ext),
(30)

where /q(el) (F2eV>) denotes the electromagnetic four-force generated by the 
second (first) corpuscle, whereas K}ext) (K2(ext)) stands for the external force 
required to constrain the corpuscles in question to perform the prescribed 
cyclic motion. Hence the total four-momentum P supplied during the process,
amounts to

P = (j) {K±ext) dn + X2<ext) dr2}

- d) dn + P2(el) dr2}

- (Pi1-2) + Pi2-1))

(31)

where Pjj1,2) (^i2,1)) is given by eq. (23). Now utilizing the generalized 
relationship (22) between action and reaction, the expression for P may be 
rewritten as

p = _ Pjl,2)+ pU,2) «

r ’ (32)- dx [^2) (x) - .^2)(æ)].s1 (t) . I

It should be emphasized that neither this result, nor the relation (22) on which 
it is based, is valid differentially, but only holds for the entire cyclic process.

* A similar result is obtained by Feynman and Wheeler (loc. cit), who, however, attempt 
to interpret the relation differentially, in stead of maintaining the integral form.
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Finally, summing the contributions from the infinitely many charged 
constituents of the system, and remembering that the importance of the “self­
terms” is negligible compared to the interaction terms, one obtains for the 
total expenditure of four-momentum during the process

- i 2 / - .^’(OKO)
a*b (33)

- dx[^"Ä(.r) - .^a(x)]s(x),

where .s(xj now signifies the total four-current density, and r, a(æ) the 
total electromagnetic field.

This result, which is valid for an arbitrary finite charge distribution, 
represents a rigorous consequence of the conventional Maxwell theory, and 
the appearance in the integrand of the advanced fields raises no problem 
of interpretation. Indeed, it is clear that the derivation provides no basis for 
attributing to the difference r(x) - a(æ) the status of a measurable field; 
the occurrence of this difference is merely dependent on the formal artifice 
of exploiting the symmetry between the retarded and advanced Green’s 
functions so as to combine in a special way the contributions in eq. (31) 
from the mutual interactions to the net energy-momentum expenditure.

The general expression (33) may in particular be applied to the case 
of a charge distribution so limited in spatial extension, that the difference 
& r(x) - SFa(x) (which is regular even in the point limit on the world line 
of the source) may be expanded in terms of the dimensions of the system. 
The well-known result*,  first derived by Dirac, for the difference ^^(x) - 
^^a)(x), in the immediate vicinity of the world-line of the a’th corpuscle, is

Pî-IU.AÿJ, (34)

where the terms neglected vanish as the point x approaches the world-line. 
Inserting this relation into equation (33), and using the expression (24) for 
the current density, one finds for the total four-momentum expenditure in 
the limit when all the world-lines of the corpuscles become identical

(35) 

(the second term in the integrand does of course not contribute in a cyclic 
process).

For complet eness a slightly simplified version of Dirac’s derivation is given in appendix A.
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Since the previous considerations were solely concerned with cyclic 
processes, the entire energy-momentum expenditure was ol' course of ir­
reversible character. For the following discussion it is essential to generalize 
the considerations so as to embrace instances in which the energy and mo­
mentum of the system also suffer a reversible change. Thus, consider a 
process, in which a pair of corpuscles is brought from rest at infinite separ­
ation along arbitrary world-lines to a state of common uniform motion. From
the equations of motion (30) the total energy and momentum to be supplied 
is now given by 

dP(T) = f A\(ext)dn + f 7 A2(ext)dr2
J — 00 J — 00

= (<5zni + ôm2)Zl U -
(36)

where AU denotes the change in the four-velocity. The integral is evaluated 
in appendix B, and the ensuing result for P = Pmitiai + AP is

P(T) = (ômi + ôm2)U
àqiôq2

£
- J^j2)(,r)]si(x-). (37)

where it is understood that the final state of common uniform motion has 
been reached at least a time 2y£ prior to T, £ being the rest-distance between 
the corpuscles. Furthermore I denotes the four-vector of length e joining the 
two world lines, perpendicularly to the common four-velocity U, and p2 is 
defined such that a light signal emitted from the first corpuscle at that time 
will reach the second corpuscle at time T (see figure 2). Finally, iy = L\.

Provided the system becomes isolated at time T in the laboratory by 
simultaneous removal of the external constraining forces, the energy and 
momentum of the system is given by the expression (37). Clearly the non­
covariant appearance of the third term in this formula is associated with 
the fact that the plane T = constant is not intrinsically related to the world 
lines. In the present case of common uniform motion, however, the plane 
perpendicular to the four-velocity is evidently singled out, and it can there­
fore be expected, that if in the integration leading to equation (37) the plane 
T = constant, is replaced by the plane T = constant (corresponding to remov­
al of the external forces simultaneously in the rest-frame) the resulting expres­
sion would “appear more covariant”. Indeed, it is evident (see figure 2) 
that
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T'

T dr
T'

f T Æ2(ext) c/r2J_oo 2

= dP(T) + dgiJ

zlP(T) + ôqiôq2\
zy )

A /]
£3 r,

(38)

where the last step is justified since the motion in the lime interval concerned 
is uniform. Hence, Pfå = Pinitiai + ZlP(y) is given by

P(T) = (dn?i + ^2) tT(y)
£ J — oo

It is important to realize that equation (39) should not be construed as a 
re-defmition of the energy and momentum of the original system, but that 
it represents the true energy and momentum of a different system, namely 
one prepared by removing the constraining agents at different instances T' 
and T (as judged from the laboratory system) for the two corpuscles. Thus, 
the symbol U(2°) is meant to indicate that the four-velocity U is achieved by 
the two corpuscles at times T' and T, respectively.

Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 9. 2
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Extending the above considerations to the case of a large number of 
corpuscles of identical charge, uniformly distributed on an infinitesimal 
spherical shell of radius £ in the common rest-frame, one obtains in the 
continuum limit in place of eq. (37):

where we have used the relation (34) and where M = 
Similarly eq. (39) is replaced by

Defining the electromagnetic energy-momentum tensor for the system of 
electrified corpuscles

ik ■ 2 
a # b

(42)

(where of course in the continuum limit the restriction on the summation 
may be dropped), the four-momentum ^(T) may alternatively be expressed 
as*  t

* Actually, the ensuing expressions (44) and (45) are slightly more general than the cor­
responding expression (40) and (41), since the former do not presuppose the corpuscles to be 
in uniform motion at the moment considered.

^(T) = MU~2 ( dx^^(x)sa(x) MU - ( dxdx-^{x) (43) 
a^b<! Jor

^(T) = mu + f er. dr, (44)
J T = const.

where dl\ = idx.
Similarly, the expression (41) for the four-momentum may be written

= mu^} + f er. dQ.
* T = const.

(45)
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Of course, once the system, prepared according to the prescription (45), has 
o

become isolated, it is possible to replace the plane T = constant with the 
plane T = constant without changing the value of the constant four-vector ^(ÿ) 
However, on the plane T = constant the corpuscles would in general not 
move with the common velocity f7(£) and the value of the electromagnetic 
energy-momentum tensor would have changed accordingly. Thus, it is 
important to bear in mind that even in the point limit, when the charge is 
concentrated within a vanishingly small spatial domain, the two quantities 
^(7’) and.^(y) remain quite distinct in value as well as in physical content*.

§ 3. Differential Energy-Momentum Balance and Equations of Motion 
for a Point Charge

In accordance with the plan outlined in the Introduction, we now 
proceed to the contraposition of the conclusions arrived at in the previous 
paragraph, based on the conventional Maxwell theory, with the endeavours 
initiated by Dirac1* to develop a classical description of an ideal point elec­
tron. Although the inference drawn in the earlier discussion regarding the 
occurrence of damping acting on the individual charge remains valid, the 
question as to the origin of this phenomenon now requires a new answer. 
Indeed, since the mentioned inference did only depend on the principles of 
retardation and energy conservation, it is clear that — unless at least one of 
these general principles is abandoned**  — the introduction of the notion of 
an ideal point charge immediately creates the need for the concoction of a 
recipe to account for the damping, a direct analysis being excluded by the 
very quality of this notion. Needless to say, there is a considerable freedom 
in selecting the way in which the classical electron theory is adapted to this 
new concept.

To exhibit most clearly the essential differences between the theory 
proposed by Dirac and the conventional description, it is advantageous not 
to follow directly the path trodden by him, but to proceed in a manner which 
at every step permits of a comparison between the two different schemes. 
Hence, the plan of action for the ensuing section is as follows:

Imagine that in each of the momentary rest systems corresponding to 
the motion of the electron, the point charge is surrounded by a sphere of

* A thorough discussion of this aspect of the problem will be found in Studies in Classical 
Electron Theory II.

** Cf. the later remarks on the work by Feynman & Wheeler2).
2*
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vanishingly small radius e, and evaluate in the momentary rest-frame the total 
o
—> o

electromagnetic momentum and energy (.^o, <^q) formally associated with 
the region, ß, exterior to this tiny sphere. Follow next Dirac and his school in 
— explicitly or implicitly — exploiting the freedom gained through the intro­
duction of the notion of a “point charge’’ to re-define the electromagnetic 
energy and momentum of the system so as to transform as a four-vector, 
namely that four-vector whose components in the momentary rest-frame are 

o
—> o

given by (^q> 1 ^ß) just introduced. Finally, contemplate for comparison the 
similar problem, within the conventional scheme, of evaluating the electro- 
magnetic momentum and energy (jPr, £associated with the domain F 
exterior to the Heaviside ellipsoid corresponding to a sphere of radius e in —>
the momentary rest-frame. Of course, the quantity iS’p) is not a four- 
vector, as is evident from the fact that the electromagnetic energy-momentum 
tensor is not separately divergence-free.

❖

To carry into effect this plan, consider the motion of a charged particle 
interacting with an incoming external source-free electromagnetic field, 
and focus the attention on that part of the total electromagnetic field, which 
is causally connected to a definite segment of the particle trajectory, corres­
ponding to two successive positions of the particle ir(fi) and x(tz) at times 
h and t%. Remarkably enough, it is possible to evaluate explicitly the total 
momentum and energy formally associated with the mentioned part of the 
field, which is of course confined to the region 3 (see fig. 3) between two 
consecutive light spheres centred at the two points x (fi) and x (^2) respectively. 
Although the momentum and energy of this part of the field has no direct 
physical significance, the formal expressions obtained are of some interest 
in themselves and will provide a useful intermediate step for the evaluation 
of the corresponding quantities associated with the domains of proper inter­
est, ß and r.

The total field may be written as

E(t) = ÊR(t) + Êin(t) 1
(46)W) = Hß(0 + Hfn(0, )

—> 
where the retarded Liénard-Wichert fields ER and HR are given by the 
familiar expressions
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£Ä(0 - Ei(O+£n(O
Q n-t ( Q nx[(n-t)xg]

~ y\l-t-n)3(t-tRy +(1-t-n^ (t-tR)

HR(t) Ht + H^t) = n X Ej + n x Eu,
—> —>

the abbreviations ET and En referring to the first and second term of E R 
—A •

respectively and correspondingly for HR. Furthermore n denotes the unit 
vector from the retarded posi tion to the field point and the velocity t as well 
as the acceleration g are to be evaluated at the retarded time tR\ as usual 
y-2 = 1  i)2 The straightforward but cumbersome evaluation of the integrals

<fs “ èr J-^1 + + ^‘”)2 + + +
(48)

is deferred to appendix C, but for the purpose of reference the results are 
quoted here term by term:*

* It is noteworthy that the expressions (49 a) and (50 a) depend only on the instantaneous 
velocity of the particle, in spite of the fact that the integrands depend on the entire preceding 
trajectory.
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2HIHII}dV

Q2
3

4y2(72)- 1
2(/-fi>)

4y2(b) ~ 1
2(/-7i)

Similarly

(a)

(b)

(c)

(d)

(49)

1
4 71

(a)

1
(b)4 TT (50)

1
(C)4%

t1
4 TT

ïïO2

(1 - P2)3

v (/2)
/ - /2

= 0>in = constant.J x in J dl 

al] 
space

J' x in + in

ail
space

The constancy of 6tn and &in simply expresses that the incoming field 
——• • • • •Ein, IIin, according to its definition, at all times develops as a free field, 
independent of the presence of the charge. Thus the fact that the incoming 
field may nevertheless transfer energy and momentum to the particle, is 
reflected through the occurrence of interference between this field and the 
retarded field generated by the charge (cf. equations (49d) and (50 d)). 
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Although the structure of the right-hand side of equations (49 b) and (50 b), 
• • • • • • • —in view of the expression (35), may invite an interpretation of En and Hu 
as “the radiation field” carrying at any time the “total radiated four-momen­
tum”, it must be clearly recognized that such an interpretation is purely 

• • —formal, already because the quantities E1T and HT1 do not by themselves 
satisfy the Maxwell equations. As far as equations (49 a) and (50 a) are con­
cerned, the curious form of the right-hand sides is clearly connected to the 
fact, that the boundaries of the region S are spheres whose centres are dis­
placed relative to the instantaneous position of the particle.

Collecting the terms in eqs. (49) and (50), letting h -> - oo and (in 
the regular terms) t% I one obtains*

<e(0 = |Q2
4y2(f2) -1
_2(f-f2) dt

+ fo2 g2 - (g xi?)2

(1 — p2)3
df + £in

0>s(,r> - +7x "<„}<«
(51)

From this result it is not difficult (see appendix C) to arrive at the desired 
expressions for the energy and momentum corresponding to the regions 
Q and F:

* Of course we assume that y2(ti)/G -> 0 for — oo thus excluding cases like the ideal 
hyperbolic motion.

(52)
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O2 i 1
<?r = 7 XO(1 +|"2(0)-Q p-E/rad/

— £ J — 00

dt + é in

±Q2 -> f * r~>
ïï9“/(0^(0-0 {Ein

£ & J — 00
+ ~V X Hin}dt

9 2 ~ (9 x^)2-± 
(1 - P2)3 l> di + ^in,

(53)

where, in the latter case, the expansion of Sp and SPp in powers of e has 
been restricted to the leading-order term (proportional to Q2/2e) which for 
dimensional reasons is independent of the acceleration.

Thus, in comparing eq. (52) with eg. (53) written down in the momentary 
restframe, it should be borne in mind, that in the derivation of eq. (53) from eq. 
(51) a zeroth-order term in e, corresponding to a term which, again for dimensio­
nal reasons, must be linear in the acceleration, has been neglected.

In passing, it may provoke some reflexion that the Lagrangian density corres­

ponding to the retarded field, — (E2 - II2), integrated over the regions S(fx-^ - oo ) 

and r, respectively, yields the simple results:

— f „(E2 - H2)dV =8nJSy R R
Q2

(54)

If O2 1
— (E2 - H2)dV = —(55)8 nJ R R 2ey(t) K

To complete the provisional plan agreed on, it only remains to declare 
the electromagnetic energy and momentum of the system to be given by that

—
four-vector ^q(t) = (^Wt), û<q(t)) which in the momentary rest-frame 

reduces to (^q, (^_o) given by eq. (52). Thus

^ß(r) - f-Cr-fQ2ff + lQ2f
— £ J — <x> J—oo

f !.? 9 - lQ2((j - 92E) - Q^an}u\dT + ^in (56)

F ■ dQ.
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where denotes the total electromagnetic energy-momentum tensor, and 
where the symbol below the integral sign is meant to indicate that the inte­
gration is extended over the domain Q, i.e. that part of the three dimen­
sional hyperplane orthogonal to the momentary four-velocity, which is exte­
rior to a sphere of radius e centred at the momentary position of the charge. 
The last step in eq. (56) is justified by noting that in the momentary rest­
frame

(ExH)dV, 1 f (E2 + H2)dV| (57) 
_q 8%J _q j 

the right-hand side being given by eq. (52).
Compare now eq. (56) with the corresponding expression (not four- 

vector) within the conventional scheme:

(^y(f), i^p(f)) = dr = i

~f

where the symbol below the integral sign is now meant to indicate that the 
integration is extended over the domain F at constant laboratory time T. 
Clearly, the important feature to notice is that since in eq. (56) contributions 
from various spatial regions are added corresponding to simultaneity in the 
rest-frame (as opposed to eq. (58)), the definition (56) of ^_q(t) is tantamount 
to abandoning the idea that the electromagnetic energy and momentum at 
a given moment is carried by the field at that moment. In this connection 
it is essential to realize that even though the energy-momentum tensor is 
divergence-free through all space outside the charge, it is not possible to tilt 
the cut hyperplane, over which the integral in eq. (56) extends, without 
changing the value of ^q(t). This fact is already manifest from a comparison 
of the expressions (56) and (53) in the special case where the acceleration 
actually vanishes at the moment considered.

Although the appearance of the expressions (56) for ^q(t) and (53), 
(58) for p, <op) naturally invites comparison with the expressions (41), (45) 
for and (40), (44) for ^(T), respectively, it should be borne in mind 
that, whereas the latter quantities simply refer to different electrified systems, 
the former ones are competing candidates for the role as the electromagnetic 
energy and momentum for one definite system, consisting of a point charge 
interacting with an external field. As a matter of fact, even if Dirac and his 
school claim to consider the electron strictly as a point charge, nevertheless 
their exploitation of the conventional Maxwell theory presupposes an under­



2 Ci Nr. 9

lying picture of the “point electron” as the limit of a tiny charged spherical 
shell. A further dissimilarity to bear in mind, when comparing the mentioned 
expressions, arises from the different attitudes towards the stability problem 
in the two models. In fact, in accordance with the classical Lorentz theory, 
the stability of the corpuscular system poses no specific problem, once definite 
assumptions regarding the stabilizing forces are agreed on. In contrast, the 
very idea behind the endeavours of the proponents of the “point electron” 
is precisely to avoid any reference to non-electromagnetic forces as stabilizing 
agents. In this situation the non-vanishing divergence of the electromagnetic 
energy-momentum tensor becomes an obstacle, which is only circumvented 
by re-introducing the non-electromagnetic forces well hidden in the disguise 
of “mass renormalization”.

On the background thus acquired it is particularly easy to display the 
essence of the attempts initiated by Dirac of constructing a renormalized 
equation of motion for a classical point charge. Indeed, once it has been 
agreed that the electromagnetic energy and momentum is given by the four- 
vector eq. (56), the gist of these endeavours amounts — in one way or 
another — to the assertion of the existence of a conservation law of the form

mbU(r) + ^q(t) = constant, (59)

where mb denotes the “bare” mass of the particle. Inserting ^q(t) from eq. 
(56) and differentiating with respect to r, one immediately arrives at the 
familiar Lorentz-Dirac equation

mg = lQ2lg-g2u] + Q^\tn)U, (60)

where m denotes the “renormalized” mass

Q2m = /n0+- . (61)
2 E

Even though the eq. (60) is, of course, known to be approximately valid in 
many instances, the claim that it represents the exact equation of motion 
for a classical point charge is unwarranted, in so far as no physical arguments 
can be adduced neither to justify the identification of the electromagnetic 
energy and momentum with the components of the four-vector ^q(t), (56), 
nor to support the conservation law (59).
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After this adumbration of the essential features in the reasoning leading 
Dirac and others to the “one-body” equation of motion (60), the remainder 
of this paragraph is devoted to a more careful analysis of the assumptions 
by which the conventional scheme must be supplemented to allow the deduc­
tion of a result, which could not be justified within this frame.

Let us first notice that the difference ^’„9(1'2) - ^ß(Ti) with ^q(t) given 
by eq. (56), may — by applying Gauss’ theorem — be written as 

where 2? denotes a 3-dimensional tube surrounding the world line bound by 
the two cut planes j£?i and Qz and where the intersection between the tube 
and the mentioned planes is the two-dimensional spherical surface of radius 
e (see figure 4). The identity (62 b), which forms the basis for Dirac’s discus­
sion is derived by him through direct expansion of the energy-momentum 
tensor in powers of £.

A critical step in Dirac’s analysis is his identification of the left hand 
side of eq. (62) as “the difference in energy (or momentum) residing within 
the tube at the two ends...”. Indeed, implicitly relying on the assumption 
that the energy and momentum within the tube at the two ends constitute a 
four-vector, Dirac demands that this four-vector at any given point .r(r) of the 
world line be expressible as some universal function B of the particle variab­
les (L, Û, Ü, . . .) at that point. Consequently, it is required that
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ß(t/(T2), 6t(t2), . . .) B(LT(n), Ù(n), . . .) (63)

Clearly, the integral (62b) extended along an arbitrary world line would not 
in general possess this remarkable property, which, of course, amounts to 
requiring that the integrand in eq. (62 b) be equal (o B, i.e., the differential 
of the universal function B. Hence, the demand (63) is but a recipe for the 
selection of the set of permissible world lines, and thus — for each choice 
of B — it is equivalent to prescribing the equations of motion for the particle.

Returning to the above-mentioned crucial interpretation of the left-hand 
side of eq. (62), we have just seen that the four-vector character of this 
integral necessitates the assumption that the energy and momentum within 
the tube constitute a four-vector. However, since the energy and momentum 
within the tube regarded as integrals over appropriate densities al definite 
laboratory time do not form a four-vector, Dirac’s identification amounts to 
a re-definition of these quantities, analogous to that discussed above for the 
energy and momentum “outside” the tube*.  In particular, combining the 
eqs. (62 a) and (63), we see that the conservation of the total four-momentum 
is expressed**  as

* This remark is further substantiated by the observation that the integral over (lie 
surface 27, referred to by Dirac as the flow of energy and momentum through the tube, cannot 
in general - when the end-surfaces Q1 and ß2 are tilted relative to each other - be interpreted 
as the flux through a moving surface during a definite time interval.

** Dirac remarks that the simplest choice for 13 would be 13 = ~ m.U in which case the 
conservation laws (64) and (59) become identical.

- B(r) = constant. (64)

In contrast to what is the case in the conventional scheme, this equation 
implies that the conserved four-momentum for the total closed system can 
be decomposed into a sum of four-momenta referring to the interacting sub­
systems.

It is instructive to paraphrase the above “deductions” within the conventional 
scheme. Here the difference in electromagnetic energy and momentum “outside” 
the tube at two successive instances 7\ and T2, referred to one and same system 
of inertia, is given by:
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Q2

2e
(7i),/(l+^CTx))

where I\ and A denote the cut hyperplanes 7\ = const, and T2 = const., respec­
tively, and where S' refers to the surface of the tube between I\ and A, the in­
tersection between the tube and the planes A and A being Heaviside ellipsoids 
(see figure 4). Furthermore, we have used eq. (53) neglecting again in the expres­
sions for S’p and & p a term linear in the acceleration*.  Insisting that the permis­
sible world lines are selected according to the requirement that the left-hand side 
of eq. (65 b) be expressible as the difference in values taken by some universal 
function B' = iB'0(Ty) (not four-vector) of the particle variables at times

* It is easy to verify that the difference between the right-hand sides of eqs. (62 b) and 
(65b) just equals the flux of ST through the tiny sections of the tube between the planes Qi and 
A, and £?2> and A-

** It should be noted, that the four functions B' cannot be chosen completely inde­
pendently of each other, since we are dealing with only three independent equations of mo­
tion. Thus, the choice of the first two members on the right hand side of eq. (68) immedi­
ately implies the need for a third term to ensure the mutual compatibility of the resulting 
equations of motion, and it is easily seen, that | Q2g represents the simplest possible choice 
for this additional term.
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A and T\, we have now in place of eq. (63)

B-(?(T.),ÿ(Tt). . . . .) - (66)

which combined with eq. (65 a) leads to conservation law (analogous Lo eq. (64))

(^r( T), <rr(7’)) - (B ' ( T), B'o ( 71)) = constant. (67)

In this case, the energy and momentum of the subsystems, adding up to the total 
conserved four-momentum, do not themselves constitute the components of four- 
vectors. Nevertheles, it is still possible to perform a mass renormalization, and the 
form of eq. (53) immediately suggests that the most alluring**  choice of B' would be

(#', iB'o) = - mbU + + iQ29 (68)

where mb again denotes the bare mass. Indeed, combining the eqs. (53), (67) and 
(68), one arrives once more at the conservation law

3
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mU(z')- f dr{^Q2(Ù - g2U) + {in)U} = constant, (69)
J — 00

where the renormalized mass m is again defined by eq. (61). Differentiation of eq. 
(69) immediately gives back the equations of motion (60).

From the above “deductions” it emerges that the most prominent depart­
ure by Dirac and his followers from the conventional scheme — namely, 
the re-defmition of the electromagnetic energy and momentum so as to trans­
form like a four-vector —- surprisingly enough turns out to be unessential, at 
least in so far as the resulting equation of motion does not depend on this 
assumption. Instead, the pivot, on which the entire argumentation turns, is 
seen to be the much less conspicuous step of taking for granted that the 
energy and momentum “residing within the tube at the two ends” should be 
a state function expressible solely in terms of the particle variables*.  It is 
through the insistence that this demand on the integral (62) be the guiding 
principle for the selection of the permissible world lines that the ground of 
classical electrodynamics is left behind. Indeed, this “principle” merely con­
ceals a postulate of the desired equation of motion.

§ 4. Concluding Remarks

As emphasized in the preceding discussion, Classical Electron Theory 
does provide a well-defined framework within which any question, con­
cerning the behaviour of electrified bodies, which may at all be formulated 
in terms of classical physical ideas, can in principle be answered, irrespec­
tively of the magnitude of the charge and mass of the bodies concerned. In 
contrast, as analysed in the previous paragraph, the attempts by Dirac, 
Roiirlicii and others to implement the scheme of classical electrodynamics 
have not resulted in a systematic description in which the notion of a point 
charge is harmoniously incorporated into the ordinary Maxwell theory for 
extended charge distributions. Furthermore, the physical interpretation of 
the new scheme is hampered by the well-known difficulties associated with 
the appearance of “advanced effects” or “acausalities” in the solutions of the 
Lorentz-Dirac equation. From the conventional standpoint these difficulties 
may be explained simply as the result of an unwarranted extrapolation of 
conclusions drawn on the basis of an approximate equation of motion. How-

* It is even more misleading when some authors profess to “derive” this property by 
arguing that the integral (62) is independent of the shape of the tube. Of course, the question 
at issue concerns a variation of the world line. 
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ever, since in the “point electron theory’’ the Lorentz-Dirac equation is con­
sidered an exact equation of motion, the “acausalitics” acquire a fundamen­
tal status thereby creating the need for a comprehensive revision of the con­
ceptual framework. Indeed, it seems that the prediction of “advanced effects’’ 
in the theory represents a contradiction in terms unless it is explicitly as­
sumed that - for some reason or another - the freedom, commonly assumed, 
of external agents or “observers” to intervene in the system under conside­
ration is limited. As long as this feature is not reflected in the formal de­
scription itself — in the way the reciprocal measuring limitations are built 
into the foundations of quantum theory -, the description remains logically 
incomplete and the question as to its observable consequences cannot even 
be formulated, much less answered*.

* It has been suggested (Rohrlich, loc. cit.), that detection of radiation from a uniformly 
accelerated electron should provide direct evidence for an acausal equation of motion. It will 
be clear from part III of these studies that this idea cannot be upheld.

It needs hardly be added that a solution to the logical dilemma repre­
sented by the prediction of “acausalities” cannot be achieved by reference 
to the empirical limitations of the classical description itself. Indeed, in any 
comparison between the “point electron theory” and the conventional scheme, 
it is of course essential as clearly as possible to distinguish between the pro­
blem of internal consistency of the description on the one hand, and the 
question of its range of empirical validity on the other. In the present con­
text, reference to empirical evidence merely serves to emphasize that since 
quantum phenomena become important already when probing into regions 
of extension far bigger than the classical electron radius, there is - empiri­
cally speaking - no room for unambiguous application of a “point elec­
tron theory” within classical physics.

Another aspect of the problems discussed is associated with the conse­
quent use of the concept of “radiation” within the classical description. 
In § 2 a simple example was analysed, which exhibited the inadequacy of 
attempts to picture the act of radiation emission as a continuous process 
localized in space and time, and it was concluded that the radiation process 
entailed a modification of the electromagnetic field as a whole. Thus, the 
fact that the field strength in a given space-time domain is causally connected 
to the motion of the source particle at a definite segment of the world line, 
does not provide a physical basis for the notion that the field energy associated 
with the domain considered has been “emitted” by the charge on the cor­
responding segment.

Clearly, the above conclusions bring in relief the arbitrariness, discussed 

3*



32 Nr. 9

in § 3, in the interpretation of the formal expressions for the “energy-momen­
tum flux” through the tube surrounding the world line of the charge. Parti­
cularly misleading in this context is the occasional reference in the literature 
to an analogy with “photons”, since the very definition of this concept ex­
cludes any well-defined application of the field picture, on which the entire 
discussion is based.

Thus, in dealing with radiation phenomena, we are presented with a 
feature of wholeness, familiar in quantal processes, but less so within the 
domain of classical physics. This feature receives a particular emphasis in 
the “action-at-a-distance” formulation of classical electrodynamics by Feyn­
man and Wheeler2), who, however, by completely eliminating the degrees 
of freedom associated with the field, are led to give up the notion of instant­
aneous energy-momentum balance, at least in its customary form.

Among the attempts to formulate a classical theory of a “point electron” 
the work of Feynman and Wheeler is distinguished by its inner consequ­
ence. As already discussed, in a “point electron” theory the presence of 
damping poses a problem without counterpart in the conventional scheme. 
In fact, within the former description the damping must either be considered 
the result of the action of the self-field on the particle, through a mechanism 
which, however, by the very idea of a point charge remains unanalysible, 
thus reducing the problem at issue to being a matter of composing a recipe 
for evaluating the effect. Or, more consequently relative to the premises, the 
possibility of self-interactions is denied altogether, in conformity with the 
conception of “charge” as an elementary property of the particle, expressing 
its ability to influence other similar particles according to a definite set of 
rules. Thus, in this case the presence of the damping acting on an individual 
particle can only be related to the interaction with other distant particles 
outside the system under consideration, and this interaction cannot possibly 
be retarded, even if only an approximate simultaneity between the motion 
and the damping of the particle is insisted upon.

A solution to this problem was achieved by Feynman and Wheeler 
through the introduction of an allegedly “fundamental” time symmetric inter­
action, which, on the one hand, makes possible the description of the damping 
acting on the individual particle as the advanced elfect of the polarization 
induced in the “distant absorbers” by the retarded interaction generated by 
the particle, and which, on the other hand — through a subtle interference 
between the advanced fields of the absorber and the charge, eliminating all 
advanced effects prior to the motion of the source — guarantees the repro­
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duction of the usual “effectively” retarded field as generated by the charge 
in question.

Notwithstanding the lesson conveyed by the very possibility of construct­
ing a coherent description of electrodynamics so far beyond immediate con­
ceptions, it remains a delicate question to what extent the scheme admits of 
the intervention of external irreversible devices, not necessarily of electromag­
netic origin. Indeed, in the absence of absorbers the time symmetric scheme 
is clearly incompatible with the presence of irreversibly functioning contriv­
ances capable of distinguishing future from past and hence also of making 
a non-predictable choice as to whether or not to prevent the occurrence of 
an event, which in the description is held responsible for actions already 
completed. Such paradoxes are avoided by (he introduction of the distant 
absorbers, which, as already indicated, causes the interaction to become 
“effectively” retarded. However, in spite of the apparent formal unimpe­
achability achieved through the above-mentioned destructive interference 
between the advanced fields, crucial for the compatibility of the time symme­
tric scheme and the possibility of influencing the future, there seems to be 
an inherent ambiguity in the notion of an advanced field — existing at all 
times prior to the future event to which it is correlated — which again becomes 
especially conspicuous if the occurrence of the mentioned event is made 
dependent on the outcome of a process which is unpredictable in principle.

As is evident from these considerations, not only the need but also the 
room for transcending classical electrodynamics, as proposed by Feynman 
and Wheeler, is procured just by the new element added to it, namely the 
idea of an indivisible point charge. In fact, as far as observable consequen­
ces are concerned, the new scheme reduces, in the case of complete absorp­
tion, identically to the conventional electrodynamics, if this concept is aban­
doned, the damping becoming again an expression for the mutual interac­
tion between the infinitesimal constituents of the “point charge”.
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Appendix A

Evaluation of the difference cF r(x) — J^x(æ) in the vicinity of the world line.

The difference between the retarded and advanced Lienard-Wiechert 
potentials at a fixed space-time point x is given by

Ar(x) - Aa(x) = U(A) 
x(xf)U(x) (Al)

where xa > xr denote the two roots of the equation (.r-.r(r))2 = 0. Expanding 
the function (.r — x(r))2 around its extremal value e2, which for convenience 
is taken to occur for r = 0, introducing the abréviation / = x- ,r(0), and 
agreeing that all quantities U, g, g etc. written without argument, refer to 
the value r = 0, one has

(x- x(t))2 = e2 - (1 + gV)x2 - A(91)t3 - ~^g2x4 + . . . 

(x- x(t)) U(x) = (1 + gl)r + y(<j/)T2 + jff2?3 + • • •
(A2)

Hence to the accuracy required, the sum and the product of the roots of 
the equation (.r-x(r))2 = 0 are given by

tr + xa - ^(gl}e2, xrXa^-e2- (A3)

Next, expand the difference (Al) in the form

AÂ(æ) - A^(æ) = ôq

T R + T A
R*t A

(A4)

where the constant vectors cq, and ao are seen to be determined by

«-I U 
lTgl’ «0

d xU(x) 
dx(x- x(ry)U(x) T = 0

(A5)

Finally, remembering that U, g, g etc. depend implicitly on x, one has

Ar(x) - Aa(x) =

- 00 u (1 + 30} + 0(£*).
(A6)
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Whence the field tensor, correct to zeroth order in £, is obtained as

r(x) - = dxK (AR(x) - AA(xf) ~ - ^ôqd K (c/l^U ~ ^ôqU K g, (A7) 

where it has been observed, that a change ô.r in x causes a change 
öl = àr + ([7ôæ)t7 in I.

Appendix B

Evaluation of energy-momentum expenditure to bring two electrified corpusc­
les from rest at infinite separation along arbitrary world-lines to a state of 

common uniform motion.

To evaluate the integral J’ in eq. (36), introduce the retarded Green’s 
function 0R(x):

T
/ dx{^)(x)s1 (x) + ^(x)s2(x)}

. <B1) 
x@r(x - y) A .s2(z/)].si(.r) + [dx@R(x - y) A si(y)]s2(æ)}

= y i + e/2 + y 3 ,

where

T
J J ctedy{(si(x) • dx^R(x-y))s2( y) + (s2(æ) • dx$R(x - y)>i(y)}.

(B2)

The integral is immediately evaluated by partial integration and applica­
tion of the equation of continuity for the current densities. Taking into 
account the boundary conditions at f = -00 one obtains

./3 - >(æi(r)> T) ôq2A^ (x2(t), T) - 2 - L, (B3)
£

where the last equality is justified by the assumption stated in the text, that 
the motion has been uniform for at least a time 2ye prior to T.

Consider next the term J^2, remembering the symmetry relation 0R(x) 
= &a(-x}:
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= j J dxdy 0(T- tx)(dx3>R(x- y))si(y ) • s2(x)

-n dxdy 0(T - tx)(dy 3)A(y - æ))«2(x) • si(y)

- Jdx@(T- tx) ^A(y- x) S2 (x) Si (y)

- J dy^dy 6 (T - ty - | æ2( T) - y | ) A^2) (y)j Si (y),

where 0(t) denotes the step function

obeing the relation

Thus one obtains

t > 0

t < 0

dx0(t - I x I) = - 20(/)d(a:2).r.

^2 = - Jdy0(T-/y - |x2(t) - y |)[â2/Aj)(y)]s1(y)

- Jdy20(T- ^)d((æ2 - y)2)(Af)(y)-s1(y))(a:2 - y)

= - I dy[9î/Aj)(y)]s1(y) + 72/?<21>,

(B4)

(B5)

(B6)

(B7)

where æ2 = (x2(r), iT) and where /i2 and the light-vector Ä(21) are defined 
on figure 2 of the text.

From the results (Bl), (B2), (B3) and (B7) one finds:

> = f dx[dx(A™ - A^)\S1(x) + åqitP- /(21>
(B8)

Remembering that for the time interval over which the last integral extends

T7 /(21)

A<j2)(æi(r)) = ôq2 £ and dxe =----- — ,

the last integral in eq. (B8) is evaluated to yield

(t- M
7

(B9)
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where

r-fi2 = = t(ZJ21) + zey).
i i

Subtracting finally the quantity

J ir.sq(.r) • lr[A<2)(.x) -Ajp.r)] = J “dxdx • [.S1(.r)(A^2) - A<42))] = 0 

(remembering that Ap = Aa for the final rectilinear sections of the world 
lines) one obtains

- px[^ A (Ag> - .4^)|S1(x.) - L- _ (BIO)

Appendix C

Explicit evaluation of the energy and momentum associated with the domains 
E, F and Q.

By means of the expression for Ei, Hi, En, 
one finds

Én as defined by eq. (47)

1 r z |(1 — y2)4 1 + v2 - (v • n)2 - 2 it • n
8tJ s 1 | (^ - /t?)4 (1-n-h)6

+ 4 ~ p2) 21? _ (n • zt)(n • <f) n ■ ~g
(t-tif)3 (1-ît-n)5 (1-zt-n)6 (1-zt-n)6

1 f f/vl (JL + (p2_1>(7l,^)2 +2(/î:î)(^,22l_ I_8%Jz' |(1—7t-n)4 (1—ït'zî)6 (1—zt-n)5 [(t-f/j)2

1 + v2—2 v • hIf 1 - P2
— dVl ----- „4% J £• I [(1 — v ■ n)6 (t-tRy

(Cl)

(C2)

(C3)
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+ 2 1 - v2
(t-tR)2 (1 - zT-zz)6

[(p - J)(l -7Z) - + p2zz-</] n

(1
(t-tR)2 (1 - p’-zz)2

1 — p2 n — v 
(1 - ~u -zz)3 (t - tR)2

(C3)

1 J dV(Eu x Hu)

1 f dv! ___ Q2-l)(/*-î) 2 | 2(zz-ff)(p -ff)|___n_

* The use of the standard notation dQ for the surface element on the unit sphere should 
here cause no confusion with the volume element on the hyperplane _Q used elsewhere.

4%JS |(l-n-p)4+ (l-p -zl)6 ’ (l-tT-zz)5 J(f-Oz)2’

(C4)

To find the value of these integrals at time t, each point x in the domain 
E is parametrized by the corresponding retarded point xR(tR) on the particle 
trajectory. In terms of the variables n = x — xrI\x — xr | and t-tR, the volume 
element is easily seen to be given by*

dV = (1 - 'vr’ n)(t- tR)2dtRdQ (C5)

and the outer (inner) boundary of E to be determined by tR = ti(tR = t2)- 
Differentiating the identities

rdQ i i rdQ i _ i
J 4n (l-zt-zz)2 1 - v2 J 4% (1-zt-zz)3 (1-p2)2

the appropriate number of times with respect to the components of u, the 
necessary angular integrals are immediately obtained:

d Q nt
4ti (1 - zT-zi)3

J zztzzx
4ji (1 — zT-zz)4

J^d’x
( 1 — zT • zî)5

3nx'lÂ
(1 -TT-zz)5

pt Z7t
(1-p2)3 J 4% (1-zT-zz)4

4_ ^Tx __
3 (1-P2)3 3(1-P2)2

Ôm

(1 - p2)4 3 (1 - P2)3

2 Vl VHVÅ + JL. ^XÂ + VÀ Öl*  + PX «ht

“(1-P2)4 3 (1-P2)3

3 (1-P2)3
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Inserting these integrals and the volume element into eqs. (C1)-(C4), one 
linds the results (49a, b) and (50a, b) of the text:

tl

- 1 I

(49 b)

V 9 (50 a)3

(50 b)
it

fo2

1
<S5T

To derive the equation (50d), notice, that E R, H R satisfy the Maxwell 
equations with the currents zo(ïr)] = ÔÇx -æ(/)) [f, i], whereas Êin, 

Hin satisfy the free Maxwell equations. Thus

dEji
dt

From the identity
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(A div B + B div A )t = (A x rot /Î + Ê x rot A )( + dx(AtBx + AxBl — ôlK A • 13)

—valid for any two vector fields A and 13, we find with A = B in and 13 = E R that

Ein div Er = Ein x rot ÊR + E R* rot Ein + surface terms.

• • —Similarly the identity reduces for A = Hin and B = H R to

(T = Hin rot Hr + ÉR x rot Hin + surface terms.

Hence, by combining these results with the Maxwell equations and 
assuming that the product of (in) and R vanishes sufficiently rapidly 
at spatial infinity, one arrives at the equation (50 d):
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Similarly, equation (49 d) is immediately obtained by integration of the 
identity

To evaluate the leading-order term in the energy and momentum as­
sociated with the domain r, the Heaviside ellipsoide — with semi-major axis 
e —centred at the instantaneous position x(/) of the charge, is enclosed in 
the smallest possible lightsphere centred at the retarded position Since 
the terms proportional to Q2/2e are independent of the acceleration, the 
motion may be assumed to be uniform between and f. Then, as is evident 

j/1 - P2 
from the figure, the radius R = t - is related to e and z? by R = e

1 -v 
Furthermore the surface of the ellipsoide and the lightsphere is described 
by the relations

pl— v2 sin2 d 
e j/1 - v2

1

ru
—-----  [zi cos d + \ 1 - v2 sin2 #1,7?(1-zi2)L

where rz and ru are defined on figure 5.
Since by assumption the field at time t between the two surfaces in 

question corresponds to that of a uniformly moving charge, the integral over 
the appropriate densities are easily evaluated to yield

1

(1 - n2)2
y

Q2

8%
I

1

.1^
J C?V[£2 + H2]uniform

f Q2 (1-P2)2 Q2 V
dV------ ------ ---------(1+ z;2 sin2 #) = ---------

J r4 (1 — zz2 sin2 #)3 2 £ 1 + z?

sin2 d =----- -— y v.
2 e 1 + v
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Hence, remembering that f - /2 = R, one obtains the eq. (53) by means of 
the relation:

(?r(0, <^r(0 = (^e(O), ?s(0) + Mrs),

where (^%.(t), <^s(0) 4S given by eq. (51).

Finally, to evaluate the energy and momentum associated with the 
volume X2, the sphere of radius e centred at the instantaneous position æ(/) 
is enclosed in the smallest possible lightsphere (i.e. of radius £ - ~ +

£2, remembering ~v(t) = 0) centred at the retarded position ~x(tz) (see 
figure 6).

Since |lr(/2) - ^?(01 ~il^|s2, the volume ß - E between the two 
spheres is of the order of magnitude | g | £4, and hence there is a finite amount 
of energy, associated with this volume even in the limit of vanishing
£. To the appropriate accuracy it is evident that (cf. the footnote on page 39)

1 C Q2 Q2 f dQ , > Q2 ->
= - H-tfV = — £2^|£2(l-costf) =

8% J r4 £4 J - 4
Q-3

Whence, inserting t - tz = £ + vl # I £2 hito the expression for tog as given 
o

by eq. (51), one obtains the first of the eqs. (52): g + Since 
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the momentum density associated with the volume in question is of order 
Q2|^7l/e3, the corresponding momentum vanishes with e. Thus the value of 

o
may be immediately obtained by substituting u (#2) ~ -^(/)(f-/2) into 

the expression (51) for
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Synopsis

Channeling of 700-keV electrons in silicon has been investigated by measurements of the 
large-angle scattering yield from thin single crystals as a function of incidence direction. The 
peaks in yield for incidence parallel to low-index planes and axes are compared mainly to cal­
culations based upon the dynamical theory of electron diffraction. This description is reviewed in 
a formulation emphasizing similarity to the classical theory of channeling. The relationship 
between the two descriptions is discussed, and correspondence in the limit of large quantum 
numbers is illustrated, partly by the example of a harmonic oscillator, partly by analytical results 
for a simple model, derived within the WKB approximation. Estimates of the magnitude of the 
quantum numbers associated with the transverse motion of channeled particles are derived 
semiclassically from the available phase space for bound states in the transverse continuum 
potential, and the importance of distinguishing between axes and planes and between positive 
and negative particles, is pointed out. These qualitative considerations are supplemented with 
results of numerical calculations, based upon the classical channeling theory and the dynamical 
theory of electron diffraction, respectively. This comparison illustrates the transition to the 
classical limit for increasing projectile mass and provides a quantitative test of the correspondence 
criteria based on semiclassical estimates.
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Introduction

This study of electron and positron channeling may be seen as part of a 
general investigation of the channeling of light particles which, during the 
last decade, has been performed partly at the University of Aarhus, partly at 
Bell Telephone Laboratories. Motivated by the strong channeling effects 
found for heavy particles (protons, a particles, etc.)1’2, attemps were made to 
look for similar phenomena for electrons penetrating single crystals3. The 
basic features of the channeling effect for both positrons and electrons were 
first established by Uggerhøj in a beautiful experiment4, where the angular 
distribution of electrons and positrons, emitted by 64Cu embedded in a 
copper single crystal, were studied simultaneously. The observation of an 
axial dip in yield for positrons, and a peak for electrons, was in qualitative 
agreement with expectations based upon the theory5 of heavy-particle 
channeling. The measurement was continued in order to obtain more 
quantitative data, and the results were found to be in fair agreement with 
estimates based upon classical mechanics6.

A basic difficulty in such emission experiments is the damage due to 
implantation of the radioactive atoms. To avoid this problem, experiments 
with external beams of electrons and positrons were initiated. A measure­
ment of the large-angle scattering yield as a function of direction for an 
external beam is, in principle, equivalent to a determination of the angular 
distribution of particles emitted from lattice sites (reversibility5 or reci­
procity7).

Positron channeling in gold8 and silicon9 was studied with an external 
beam. The general result was that positron channeling is adequately des­
cribed by the channeling theory based upon classical mechanics, although 
for planar channeling some fine structure due to Bragg interference was 
observed.

For electrons the situation is somewhat different10. Owing to their negative 
charge, electrons penetrate readily to the atomic scattering centers in the 
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rows and planes. Incoherent multiple scattering will therefore be stronger 
than for positive particles. Furthermore, it may be seen from semiclassical 
phase-space estimates that the number of bound states in the transverse 
potential is quite large in most cases for channeled positrons, while for 
electrons it is considerably larger than unity only at relativistic energies.

The possibility of electron motion in bound states along rows of atoms, 
describable to some extent by classical mechanics, was first studied theor­
etically by Lindhard11. In an experimental study of electron channeling in 
gold by Uggerhøj et al.12, the interest was focussed on classical aspects of 
axial channeling and on predictions from the classical treatment. Later 
the measurements have been extended13 to higher energies and to include 
also planar effects and a detailed comparison to many-beam calculations. 
Parallel to these investigations, the measurements to be reported here of the 
channeling of 700-keV electrons in silicon were undertaken. Results on 
axial channeling were included in the discussion by Uggerhøj et al.12>13.

Electron channeling was approached independently on the basis of the 
well-established theory for the phenomena observed in electron microsco­
py14. Angular variations of the electron-backscattering yield for incidence 
close to a planar direction were predicted by Hirsch et al.15 and found 
experimentally by Duncomb16. In the study by Hall17 of the effect of lattice 
structure on the yield of characteristic x rays, the main emphasis was on a 
detailed description of the thickness dependence due to inelastic scattering. 
Later Howie et al.18 studied the emission of electrons from neutron-activated 
thin crystals and compared to both classical calculations and calculations 
based upon diffraction theory. It is a common feature of these experiments 
that only planar channeling has been investigated. From the point of view 
of diffraction theory, an axis is basically an intersection of a set of planes, 
and nothing much but unnecessary complications is gained by studying 
channeling close to an axial direction19. In Lindiiard’s theoretical work on 
channeling, however, the axial case is qualitatively different from the planar 
case. For heavy positive particles, axial effects are stronger than planar 
effects and therefore, from most points of view, more interesting. Also, for 
electrons and positrons, the quantum numbers associated with axial effects 
are larger than for planar effects, and classical concepts may therefore more 
readily be applied to the axial case.

The attempts4-6 mentioned’earlier to relate the channeling phenomena for 
electrons and positrons to classical channeling theory for heavy particles 
were met with strong criticism. The possibility of understanding electron and 
positron channeling on the basis of electron-diffraction theory was first 
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pointed out by Howie20 and later argued strongly by de Wames et al. in a 
series of publications21. The resulting, at times rather heated, discussion 
greatly stimulated the interest in channeling of light particles and, more 
specifically, in the problem of correspondence between classical and quantal 
calculations related to channeling 22~25. For fairly recent reviews of the field, 
and discussions of correspondence from different points of view, we may 
refer to Refs. 26-28.

Correspondence between classical and quantal treatment of channeling 
phenomena is the main theme of the present study. It is composed of four 
parts. The first is a report on an experimental investigation of electron 
channeling in silicon, performed at Bell Telephone Laboratories in 1968. 
The main emphasis is on measurements of axial and planar peaks in yield 
of large-angle scattering. While electron microscopy is based on wave in­
terference observed in transmission, the most interesting and useful phen­
omenon associated with classical channeling is the strong angular depend­
ence of the yield of processes which require a close encounter between 
projectiles and target atoms.

The experimental results are compared mainly to calculations based 
upon the dynamical theory of electron diffraction. This theoretical description 
is in the second part reviewed briefly in a formulation which emphasizes 
similarity to the classical description of channeling. Problems related to 
incoherent scattering are discussed qualitatively, and examples are given 
of the treatment in terms of an imaginary potential and scattering into plane­
wave states.

Correspondence with the classical treatment is discussed in the third 
part and illustrated partly by an analysis of the example of a harmonic 
oscillator, partly by some simple calculations based upon the WKB appro­
ximation. This general analysis is followed in the fourth part by a derivation 
from semiclassical phase-space arguments of estimates of the number of 
bound states in the transverse motion of channeled particles, leading to 
simple criteria for the applicability of a classical description. Differences 
between positive and negative particles, and also between the axial and planar 
cases, are discussed on the basis of two examples. The transition to the 
classical limit is then investigated quantitatively by a comparison of classical 
and quantal calculations for different electron and positron energies. At 
high energy, where the number of bound states becomes large owing to the 
increase in relativistic projectile mass, the quantal results approach the 
classical predictions. These are for the planar case obtained from the 
formalism developed for heavy positive particles29. For negative particles, 
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the axial case presents special problems, in particular concerning the appli­
cability of results obtained from the assumption of statistical equilibrium in 
the transverse motion. These problems are discussed in the appendix, which 
contains the derivation of a classical estimate of the axial peak in yield for 
negative particles, based on statistical equilibrium.

I. Experimental Study of Electron Channeling in Silicon

I. /. Experimental procedure

Setup. A sketch of the experimental arrangement is shown in Fig. 1.1. 
The electron beam, with an initial energy of 800 keV, is scattered by a 30-/zm 
gold foil. The current of electrons transmitted through the foil into the 
Faraday cup is used to monitor the beam intensity. The electrons scattered 
by 90° lose on the average ~ 100 keV in the gold foil, leading to a final beam 
energy of ~ 700 keV, with a measured spread of 85-keV FWHM. The 
angular spread of 0.05° full width is delined by a 1-mm collimator placed 
immediately in front of the gold foil and a 0.4-mm collimator at the entrance 
to the scattering chamber.

The beam is incident on a thin silicon crystal, mounted in a goniometer 
with two perpendicular rotations. The scattering chamber contains three 
different detection systems:

(i) Annular detector for electrons scattered through ~ 10-20° by the 
crystal.

(ii) Movable detector (‘forward detector’) to scan the intensity distribution 
in the forward direction. Both detectors are silicon surface-barrier 
detectors.

(iii) Film to record photographically the angular intensity distribution in the 
forward direction.

Crystals. The thin crystals were prepared by etching 0.15-mm thick 
silicon wafers, cut perpendicular to a <110> direction. A thicker ring was left 
at the edge for support. The crystals were mounted by sandwiching them 
between aluminum and Incite plates with a 5-mm hole in the center. Mount­
ing the thinner crystals was a delicate operation, after which a careful 
examination for wrinkles was necessary.

Results for two thicknesses are reported. From an a-particle, energy loss 
measurement, the thicker crystal was estimated to be 2.8 pm thick. Un­
fortunately the thinner crystal was broken before a similar meassurement
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could be made, but from the relative electron-scattering yield, its thickness 
was estimated to be 0.2—0.3 zzm.

Measuring procedure. The orientation of the crystal was determined by the 
standard technique known from proton channeling30. The planes were 
identified by an increase in yield of the scattering into the annular detector. 
A stereogram was constructed, and thus the rotation parameters corres­
ponding to various planar and axial directions could be determined.

Angular scans through major planes and axes were performed by 
measuring the yield of scattering into the annular detector for a fixed accum­
ulated charge in the Faraday cup. In preliminary experiments, the “forward 
detector” was used, positioned at some large angle to the beam direction. 
Strong asymmetries of the peaks in yield were observed, however, and these 
asymmetries turned out to be dependent on the position of the detector. 
Such effects are known also for proton channeling and are usually ascribed 
to “blocking” of the scattered particles. In this case, however, the solid angle 
subtended by the detector was very large compared to the widths of the 
channeling peaks. Also asymmetries were seen, depending only on the 
detector being ‘to the left’ or ‘to the right’ of the beam direction. Rather than 
investigate these phenomena in detail, it was decided to use an annular 
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counter which is axially symmetric and averages over a very large solid 
angle.

The forward detector was then used to scan angular distribution of the 
beam after its passage through the crystal. Because of the small distance from 
the crystal, the angular resolution was not very good. A better resolution 
was obtained in the photographic exposures.

1.2. Results

Results from measurements on two samples of thickness 0.2-0.3 //in and 
2.8 /mi, respectively, are reported. The thickness may be compared to the 
mean-free path for scattering, defined as I = (No)-1, where o is the total 
atomic scattering cross section and N the density of atoms, N = 5 x 1022 
cm-3 for Si. A simple estimate of o is obtained in the Born approximation 
for an exponentially screened Coulomb potential,

II ere, Zxe and Z2e are the charges of the particle and the scattering nucleus, 
and v is the particle velocity. While for x > 1, the collision may be described 
by classical mechanics31, the Born approximation is valid in the limit of 
x < 1. In the present case, we have x2 0.05. For the screening parameter a, 
we way may insert the Thomas-Fermi screening radius, a = 0.8853 Z2 1/3 aQ, 
where a0 is the Bohr radius, a0 = 0.53 Å. This leads to a cross section of 
d ~ 5 x 10“3 Å2 and a mean-free path for scattering, I cc 4000 Å. More 
accurate calculations indicate that such a simple estimate is probably not 
far off32. According to Eq. (1,1), I depends on Z2 approximately as I <x Z2 4/3 
for fixed electron energy. The scattering length in gold will then be roughly 
ten times shorter, in good agreement with the measured value of / 400 Å
for 1-MeV electrons12.

Thus the thickness of the thinner sample is comparable to the scattering 
length, whereas the thickness of the thicker sample corresponds to about 11. 
The angular distributions of the transmitted electrons were in qualitative 
agreement with these estimates. For the thinner sample, the distribution 
consisted of an unscattered, central peak with tails due to single (or plural) 
scattering, whereas for the thicker sample, no central peak was observed.

o = natø, (1.1)

where a is the screening parameter and x is defined as

2|Z1|Z2e2x = ' 11 2 . (1,2)
hv
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Fig. 1.2: Scan through {111} plane for the 
0.2-0.3-^m sample. The crosses are experi­
mental points, and the fully drawn curve is the 
result of a nine-beam calculation for a static 
lattice. Bragg reflections of order up to ± 4 are 

included (9 beams).

e/sB
Fig. 1.3: Scan through {110} plane for the 
0.2-0.3-/zm sample. This calculation includes 
reflections of order up to ± 3 (7 beams). The 
error flag on the upper right-hand side indi­
cates beam divergence and statistical uncer­

tainty of the measurements.

As mentioned above, the angular resolution in scans with the forward 
detector was too poor for quantitative measurements. More direct information 
on the scattering and its variation with incidence direction is obtained from 
the yield of large-angle scattering into the annular detector.

0.2 0.3 ym crystal. Scans through the three major planes, {111}, {110}, 
and {100} are shown in Figs. 1.2—1.4. The measured yields are normalized 
to the yield in a “random” (nonsymmetry) direction. The angle with the 
plane is given in units of the Bragg angle, 0B = Ål(2dp), where Â is the electron 
wavelength and dp the planar spacing. We shall discuss the calculations in 
more detail in the following chapter. Inelastic scattering is not included, and 
thus the discrepancy in peak height, due to attenuation with depth, is to be 
expected. If, for simplicity, exponential damping with depth is assumed, the 
measurements indicate that the length corresponding to a reduction by 1/e is 
approximately equal to the crystal thickness (cf. also Sec. II.7).

The general peak shapes are rather well reproduced by the calculations. 
For the {110} and {100} planes, the width is twice the Bragg angle, whereas 
for the strongest plane, the {111}, the width is 4 to 5 times 0B. The peculiar 
shape of the {111} peak is due to the diamond structure of silicon. Each 
{111} atomic plane is split into two planes with a separation of dp/4. The
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Fig. 1.4: Scan through {100} plane for the 
0.2-0.3-,um sample compared with five-beam 
calculation. The error flag on the upper right­
hand side indicates beam divergence and 
statistical uncertainty of the measurements.

s/eB

Fig. 1.5: Film exposures of the forward beam for the 0.2-0.3 fj,m sample. The upper series of four 
exposures corresponds to the incidence angles of 30ß, 20ß, and Oß, and 0 with respect to a {111} 
plane. The lower two exposures correspond to incidence angles of 6ß and 0 with respect to a 

{110} plane.
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Fig. 1.7: Scan through a <(111)> axis for the 
0.2-0.3-//IH sample. The experimental results 
are compared to the peak in yield obtained 
from a 49-beam calculation. Effects of thermal 
vibrations are included, but inelastic scattering 
is not. Instead, the calculated increase in yield 
has been multiplied by 0.5 as in the previous 

figure (cf. also Fig. II.4).

Fig. 1.6: Scan through the (110) axis for the 
0.2-0.3-/ZII1 sample. The experimental results 
are compared to the classical formula derived 
in the Appendix. The calculated excess yield 
has been multiplied by 0.5 to account appro­
ximately for inelastic scattering. The error flag 
on the upper right-hand side indicates beam 
divergence and statistical uncertainty of the 

measurements.

{110} and {100} planes are regularly spaced. Finally, we note that the beam 
collimation was not sufficient to resolve the “wiggles” at high-order Bragg- 
reflection positions. There are, however, slight indications of these wiggles, 
especially in the {100} scan.

For selected directions of indicence, photographic exposures of the 
transmitted beam were taken. Two series of exposures are shown in Fig. 1.5. 
The upper four exposures correspond to beam incidence at angles 30b, 
20b, 0b, and 0 (left to right) relative to a {111} plane. In this case, the Bragg 
angle is 0b ~ 0.1°, and the distance between the spots is 20b ~ 0.2°. The 
spot corresponding to the incidence direction is the most intense one (second 
from the right). Below are two exposures for beam incidence at an angle of 
0B 0.17° and parallel to a {110} plane, respectively. All spots in the figure 
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have a pronounced tail. This corresponds to a low-energy tail of the beam­
energy distribution since electrons of lower energies are deflected slightly 
more by the earth magnetic field.

Scans through the <110) and (111) axes are shown in Figs. 1.6 and 1.7. 
The peaks are much stronger than the planar ones, rising by about a factor 
of three over normal yield. The <110) peak is compared to the classical 
prediction derived in the Appendix. The theoretical curve is multiplied by a 
factor of 0.5. The width and shape of the peak are then quite well reproduced. 
Since the attenuation with depth is expected to be stronger than for planes, 
also the absolute agreement is reasonable.

The peak along the weaker <111) axis is compared to a many-beam 
calculation, multiplied also by a factor of 0.5, to correct roughly for inelastic 
scattering (cf. Sec. 11.7). The widths are in good agreement and signific­
antly narrower than predicted by a classical estimate. This qualitative dif­
ference between the two axes is also apparent in the diffraction patterns dis­
cussed below.

Film exposures of the transmitted beam for incidence close to an axis 
are shown in Fig. 1.8. The exposures in the upper series are taken at tilts 
of 0.6°, 0.4°, 0.2°, and 0° from the (111) direction. The series below cor­
responds to incidence angles of 0.75°, 0.50°, 0.25°, and 0° relative to a <110) 
direction (from left to right). The strongest spot, corresponding to the in­
cidence direction, is fairly easy to identify in the upper series. In the lower 
series, the spots are very poorly resolved, but it is evident that quite a large 
number of reflections are excited. Especially at the larger tilt angles to the 
<110) axis, the scattering is clearly seen to be confined to a ring around the 
axis, corresponding to conservation of transverse energy5. In the terminology 
of the theory of electron diffraction, the observed pattern is denoted the 
zero-order Laue zone and corresponds to the intersection of the Ewald 
sphere with a plane in the reciprocal lattice14.

2.8-jUm crystal. Angular scans through the three major planes, {111}, 
{110}, and {100}, are shown in Figs. 1.9—1.11. The peaks are much smaller 
than those for the thinner crystal, indicating a strong depth dependence. 
Once again, we may estimate the thickness corresponding to a reduction by 
lie, assuming exponential attenuation. In this case it turns out to be ~ 0.4 //m, 
in reasonable agreement with the estimate based on the thin-crystal result. 
The assumption of exponential damping is obviously very crude. The peak 
shapes are now quite different. The dips are relatively more pronounced, 
and the widths are narrower, especially for the {111} plane, (cf. the discussion 
in Sec. II.7).
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Fig. 1.8: Film exposures of the forward beam for the 0.2 0.3 /im sample. The upper series corres­
ponds to incidence angles of 0.6°, 0.4°, 0.2°, and 0°, relative to a <(111)> axis, the lower series to 

incidence angles of 0.75°, 0.50°, 0,25°, and 0°, relative to a<(110)> axis.

Fig. 1.9: Scan through {ill} plane for the 
2.8-/zm sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

e/eB
Fig. 1.10: Scan through {110} plane for the 
2.8-^m sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements. 
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Fig. 1.11: Scan through {100} plane for the 
2.8-/zm sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

Scans through the (111) and <110> axes are shown in Figs. 1.12 and 1.13. 
The peak heights are strongly reduced, and a lot of fine structure has devel­
oped. An angular width is difficult to define, but it is obvious that the peaks 
are much broader than for the thinner crystal. No attempt has been made to 
check the suggested conservation of the peak volume11-12. To calculate this, 
it would have been necessary to assume azimuthal symmetry of the peak 
which, for the present measurements, would have been altogether too bold. 
The decrease in peak height is certainly to some extent counteracted by a 
broadening of the peak. This is qualitatively different from the planar case, 
which can be related to the fact that at least from classical estimates, the 
compensation of the peak for planes is concentrated in a narrow, negative 
shoulder, whereas for an axis the compensation is shallow and stretches out 
to angles of order Za/d. In the present cases, 2a/d so 4°.

Film exposures of the transmitted beam are shown in Fig. 1.14 for in­
cidence parallel to the two axes (111) and <110) and the three planes {100}, 
{110}, and {111}. The quality of the pictures is very poor compared to the 
beautiful Kikuchi patterns obtainable in electron microscopy, where a 
wealth of lines are resolved33. It does, however, suffice to demonstrate two 
qualitative features: (i) In contrast to Fig. 1.5, the angular distribution of the 
electrons after their passage through a 2.8-^m crystal is determined by mul­
tiple (inelastic) scattering, (ii) In analogy to the star patterns observed for
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Fig. 1.12: Scan through Oll)> axis for the 
2.8-^m sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

TILT ANGLE (DEG)

Fig. 1.13: Scan through <110> axis for the 
2.8-/zm sample. The error flag on the upper 
right-hand side indicates beam divergence and 
statistical uncertainty of the measurements.

protons transmitted through thin single crystals27, there are minima in the 
intensity at angles associated with a high large-angle scattering yield and, 
conversely, there are maxima at angles associated with a low yield.

Fig. 1.14: Film exposures of the beam transmitted through the 2.8 pm crystal. The upper two 
exposures correspond to beam incidence parallel to a<lll}> axis and a<(110)> axis. The lower three 
exposures correspond to incidence along {100}, {110}, and {111} planes. The small intense spot 

visible in all exposure is due to x rays produced in the gold scattering foil.
Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 10. 2



II. Wave-Mechanical Description

The calculations leading to the theoretical curves in some of the pre­
ceding figures (1.2-1.4 and 1.7) are based upon the dynamical theory of 
electron diffraction14. Similar calculation have been published by several 
authors13- 18~21. A brief description was also given in connection with the 
measurements on positron channeling8-9. The following presentation is 
intended to serve as a basis for the discussion of correspondence in the fol­
lowing chapter and therefore emphasizes the analogy with the classical de­
scription of directional effects5 and uses the notation belonging to that 
description. This is in accordance with the quantal treatment by Lervig 
et al.10, and we shall at first follow their development and discuss the deriva­
tion of the two-dimensional wave equation from the three-dimensional 
Klein-Gordon equation. In this context, the ‘many-beam’ formulation of 
the dynamical theory of electron diffraction then appears as an approxim­
ation procedure for solving by Fourier expansion the equation of motion in 
the continuum approximation.

II. 1. Basic wave equation

First, we derive the basic wave equation for the transverse motion, 
following the procedure of Lervig et al. Suppose the interaction between 
particle and lattice can be described by a potential,

V(7i) - V'0.0 (II.1)
i

where R = (x, y, z) is the position of the particle and f = (x, y), while the 
Ri’s are atomic positions and Va the atomic potential. The z axis is parallel 
to an axis or plane, and the particle is assumed to move nearly parallel to 
it. Since we are concerned with particles at relativistic velocities, we base the 
discussion on the Klein-Gordon equation for a particle of total energy E 
and rest mass Mo,
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{(/ic)M5 + [(E - V(z,f))2 - Ä/0M W) = 0. (II.2)

By describing the interaction with the crystal by a potential (Eq. (II. 1)) and 
disregarding the degrees of freedom belonging to atoms, we have at first 
neglected inelastic scattering by electrons and phonons, which leads to 
incoherence of the particle wave function. Furthermore, when the description 
is based upon the Klein-Gordon equation rather than the Dirac equation, 
spin-dependent terms in the Hamiltonian are neglected.

The incident particle may be represented by a plane wave,

V>0(7?) = e^-R, E2 = (hc)2F + ^c4. (II.3)

Since the scattering at high particle energies is strongly forward-peaked, the 
interaction with the lattice only leads to transfer of rather small momenta in 
the x and y directions, the momentum in the z dirsction being approximately 
conserved. The motion may therefore be separated into a transverse motion 
in the x—y plane and a longitudinal motion in the z direction with constant 
velocity vz ™ v = lik/M, where M is the relativistic mass, M = E/c2. For the 
transverse motion it is then natural to introduce time, t = z/v, as a para­
meter. The wave function is written as

ip(IV) = eikz • u(z,r). (II.4)

When this is inserted into Eq. (II.2) and we neglect a term V2 compared 
to 2EV and d2/dz2 compared to 2kd/dz, corresponding to scattering by small 
angles only, an equation of a type of a time-dependent, non-relativistic 
Schrôdinger equation for the transverse motion is obtained,

—u(tf) =at
> (II.5)

For a discussion of the corrections to the approximations leading to Eq.
(II.5), the reader is referred to Lervig et al.10.

II.2. Continuum approximation

Let the crystal surface correspond to z = vt = 0. For t < 0, the potential 
is zero, and according to Eqs. (II.3) and (II.4), the transverse wave function 
is then

2*
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u(f,f) = exp{ik-R- ikz} ~ exp{iÄ’1-f — iE^t/h.}

Ei ~ - E~ I(AC)2^ + jU°2c4)1/2

Å = (Å^.Å-0 = (4,, *,,*,)•

(II.6)

At time t = 0, the potential changes suddenly. In the axial case, it is for 
t > 0 a periodic function of t, with period r = d/v, where d is the spacing of 
atoms in the strings. In the continuum approximation, this time-dependent 
potential is replaced by its time average,

1 rt+T
V(f) = - V(t,f)dt, t>0.

J t
(II.7A)

The question of the validity of this approximation was studied in detail by 
Lervig et al. Also in the classical treatment of directional effects, this question 
is crucial. For the axial case, the accuracy of the continuum description 
may be assessed by the more accurate halfway-plane treatment5’ 10. It turns 
out that the continuum picture is obtained in the limit of high particle velo­
cities where the time interval r between collisions becomes short.

In the planar case, the continuum approximation is obtained by aver­
aging the potential along both the z axis (‘time average’) and the transverse 
coordinate y parallel to the plane,

V(x) = — f dyd(yt')V(t,r'). (II.7B)
J A

The accuracy of this approximation has not been studied by a systematic 
approximation procedure like the halfway-plane treatment of the axial case. 
In the classical description5, the continuum approximation was seen to break 
down at distances from a plane of order a, the Thomas-Fermi screening 
distance, even for very large particle velocities.

In the dynamical theory of electron diffraction, the continuum approx­
imation corresponds to a Fourier expansion of the lattice potential in one or 
two dimensions, for the planar and axial case, respectively. It is argued14 
that for high-energy electrons incident at a small angle to a plane (or an 
axis), only reciprocal lattice points on a line (or a plane) perpendicular to 
the plane (or axis) are close enough to the Ewald sphere for the correspond­
ing reflections to be appreciably excited. The important question remains, 
whether scattering processes leading to nonconservation of transverse energy 
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are weak enough to be treated as a perturbation. Such processes may be 
either inelastic scattering, or elastic scattering corresponding to reciprocal 
lattice points off the line (or plane) perpendicular to the plane (or axis). 
For the axial case, the importance of the latter type was assessed in Ref. 10.

We shall base our discussion of correspondence in the following chapter 
on the continuum picture, mainly because this leads to rather simple results 
in both classical and quantal treatments. In so far as the main difference 
between the results consists of fine structure due to wave interference, the 
difference may be reduced by inelastic scattering leading to incoherence of the 
wavefunction.

II.3. Solution of wave equation

In order to solve Eq. (II.5) for t > 0, we consider the stationary wave 
equation corresponding to well-defined transverse energy E±. For simplicity, 
we restrict ourselves to the planar case,

h2 d2
2Mdx2

+ V(æ) u?(x) = E^if(x),

u\t,x) = u\x)e

(II.8)

where z?(x) is the eigenfunction belonging to the eigenvalue E^. The Hamil­
tonian is invariant under transformations x .r + ndp, where n is an integer 
and, consequently, if(x) can be written as a Bloch wave,

i/(æ) = eiÄTW(x), (II.9)

where a?(x) is a periodic function, tt?(x + ndp) = (d(x). In order to find 
solutions (II.9) to (II.8), we expand the potential as well as the wave func­
tion in a Fourier series,

V(æ)=2V7le^^ (II.10)
n

-2C!mé'tx (II.11)
m

where g is the length of the reciprocal lattice vector corresponding to the 
distance dp between neighbouring planes, g = ‘Znfdp.

If we insert (II.10) and (II.11) in (II.8), and identify terms with the 
same exponential factor, we obtain for the coefficients Cjn

^.(k1 + ngyCi.+2C‘mVn-m - E{C>n.
(11-12)
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This system of equations leads to approximate eigenfunctions when only 
a finite number of terms in (II.10) and (II.11) are included. In the termi­
nology of diffraction therory, the term in (II.11) with n = 0 is the primary 
beam, whereas terms with n #= 0 correspond to diffracted beams. A cal­
culation including N terms in the expansions (II.10) and (II.11) is therefore 
denoted an iV-beam calculation. The system of equations (11.12) then 
reduces to an eigenvalue problem for an N x N matrix Ä given by

Anm ~ Vn — m> Il III

h* x (11.13)
Ann = — (À-± + n^)2 +V°. ;

In an N-beam calculation there are for fixed k± N eigenvalues correspond­
ing to N orthogonal wave functions t?(æ) given by (II.9) and (II.11). The 
dependence of the exact eigenvalues and eigenfunctions on Àq is periodic 
with period g. For the solutions of a truncated matrix (11.13), this periodicity 
will only hold approximately within a limited range of kL values. In practice, 
the number of beams is chosen to be large enough for this range to comprise 
the interesting range of incidence angles.

77.4. Scattering yield

At first we estimate the atomic scattering yield relative to the random 
case, corresponding to an eigenfunction u^(æ). For large-angle scattering, the 
contributions from different atoms are incoherent due to the recoil. Clas­
sically large-angle scattering of energetic particles corresponds to collisions 
with very small impact parameter, and the yield will therefore be proportional 
to the particle flux at atomic positions. The classical picture applies when 
the quantity x, defined in Eq. (1.2), is large compared to unity. In the opposite 
limit of small x values, the scattering by a single atom may be calculated 
in the Born approximation. The yield is then proportional to the square of 
the matrix element <iF| Va| id), where id and ul are the initial and final states 
of the projectile and Va is the atomic potential. For large-angle-scattering 
corresponding to a transfer of a large transverse momentum hAk, the matrix 
element receives its major contribution from distances < 1/Ak from the 
the center of the atom. If the initial wave function does not vary significantly 
over distances ~ 1/Ak, the yield will then also in this limit be proportional to 
the intensity | id |2 at the position of the atom. This result is therefore ob­
tained as a direct consequence of our basic assumption of predominance of 
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small-angle scattering, which implies that in the matrix (Eq. (11.13)), only 
Fourier components corresponding to ng « Ak need be included.

If the intensity distribution | ul(re) |2 varies only little over a distance 
~ Q, the R.M.S. vibrational amplitude perpendicular to the plane, the yield 

is given approximately by the intensity at the equilibrium position,

_ i„j(o)p _ geo2- (U.K)
n

Here, and in the following, we assume the coefficients CJn to be real, which 
may always be achieved if the crystal has reflection symmetry. Also, for 
simplicity, we have assumed that rr = 0 corresponds to the position of the 
atomic plane. The two assumptions are not always compatible as, e.g., 
they are not for a {111} plane in a diamond lattice (cf. Fig. 1.2 and the 
corresponding comment in the text). In such cases, the appropriate phase 
factor must be included in Eq. (11.14), which is modified to

%, = 2 (II.14a)
n, m

when the atomic plane is at x = .r0.
As in the classical description29, the most important correction for thermal 

vibrations is the modification of the yield due to displacements of the 
scattering centers from the plane. When the intensity is averaged over a 
Gaussian distribution of displacements, Eq. (11.14) is modified into

- 2 (11.15)
m, n

where Dnm are factors of Debye-Waller type,

Dnm = exp{-|(n-m)2(/2e2}. (11.16)

A less significant effect of thermal vibrations is the modification of the 
lattice potential. Incoherence due to atomic recoil reduces the coherent 
scattering, and this may be taken into account by multiplying the Fourier 
components of the potential by a Debye-Waller factor,

V„ -> VnDno, (11.17)

where Dno is given by Eq. (11.16). The corresponding reduction of large 
Fourier components may alternatively be interpreted as being due to the 
smearing of the planar potential which results from a convolution with the 
Gaussian probability distribution for the position of atoms relative to the 
plane.
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The corrections (11.15) and (11.17) only become important when the 
wave function contains Fourier components corresponding to transverse 
wave vectors ng ~ l/ø. Since (ffo ~ 30 this will only be the case when at 
least 5-10 beams have to be included in the calculation.

II.5. Surface transmission

The wave function for t > 0 may be expanded in terms of eigenfunctions,

j 1 n

where we have utilized that matching at the surface (f = 0) to the incoming 
plane wave requires all eigenfunctions in Eq. (11.18) to correspond to the 
value of Åq determined by Eq. (II.6). Also the coefficients are determined 
by this matching, and we obtain

(11.19)
i

If the eigenfunctions are normalized,

n
(11.20)

it is easily seen that
(11.21)

Neglecting at first thermal vibrations, we then obtain for the yield P of 
large-angle scattering, combining (11.14) with (11.21),

(11.22)

If thermal vibrations are taken into account, Eq. (11.14) is replaced by 
(11.15), and we obtain

j m,n
(11.23)

In Eqs. (11.22) and (11.23) we have added the contribution from different 
eigenfunctions incoherently. The results therefore apply to measurements 
which are averages over a thickness large enough to correspond to large 
variations of the relative phase of different eigenfunctions. This assumption 
of random relative phases is analogous to the assumption of statistical equi­
librium in the classical treatment.
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The yield of large-angle scattering is determined by the spatial intensity 
distribution of the channeled particles. By a transmission measurement of 
the intensity of different Bragg spots, one may determine the distribution in 
momentum space34. The corresponding formulae may easily be derived, 
but we shall instead turn to the problem of incoherent scattering which, in 
the theory of electron diffraction, plays a role very similar to that of de­
channeling by multiple scattering in the classical theory of channeling.

II.6. Incoherent scattering

An order-of-magnitude estimate of the total cross section for scattering 
by atoms in a random medium was given in the previous chapter (Eq. 
(1.1)). For a wave function with high intensity at the atomic sites, there will 
be a strong increase in scattering. On the other hand, for small scattering 
angles, the intensity is mainly concentrated in the coherent Bragg peaks. A 
cursory estimate of the corresponding reduction of in coherent scattering 
may be obtained from the scattering law applied in the previous estimates,

(11.24)

Here, 0O is given by the ratio of the electron wavelength X to the screening 
radius a, 0o = 2/a. Since the incoherent scattering is proportional to a factor 
[1 - exp(— @202/Â2)], a rough estimate of the incoherent fraction is

(11.25)

In silicon this estimate leads to a rather small incoherent fraction, 
oj 1/6. In view of the rough approximations made in the calculation, this 
number should be considered only as an indication of the importance of 
corrections for coherent scattering to the inelastic scattering cross section. If 
the atomic scattering is strongly reduced, inelastic scattering by electrons may 
play a significant role especially for low Z2. It should be noted, however, 
that the enhancement of incoherent scattering (anomalous absorption) 
corresponding to the increase in large angle scattering yield will be much 
stronger for thermal scattering than for electronic scattering.

A considerable amount of work has been devoted to the problem of 
estimating inelastic scattering in connection with electron microscopy. 
Recently, a review was given by Howie and Stern35, which also may be 
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consulted for further references. Usually, inelastic scattering is taken into 
account by adding an imaginary part to the potential. Such a simple treatment 
will probably not suffice in the present connection. Since the inelastically 
scattered electrons also contribute to the large-angle scattering yield, we are 
concerned not only with the effect of inelastic scattering on the initial, 
coherent wave function — absorption — but also with the properties of the 
final stales. Thus it may be complicated to introduce inelastic scattering even 
in the comparatively simple two-beam case17. As a first approximation, the 
final states may be assumed to be plane waves36. For the thermal scattering, 
which involves rather large momentum transfers, this assumption may not 
be too bad. Since, however, for scattering by electrons, the cross section is 
strongly peaked at small momentum transfers, the wavefunction may not 
change its symmetry even after several plasmon excitations14’35.

In the axial case, the problem of incoherent scattering is particularly 
severe. The strong potential minimum should lead to fairly localized states 
and a large peak in scattering yield. Such states will be highly unstable, and 
the incoherent scattering cannot be treated as a small perturbation. A treat­
ment in terms of statistical concepts may then be more appropriate11- 37.

11.7. Numerical evaluation and comparison to experiment

When only a small number of Fourier components (beams) are included, 
the many-beam formalism lends itself readily to numerical evaluation. 
Planar peaks in scattering yield for 700-keV electrons along {111} and {110} 
planes in silicon are shown in Figs. II. 1 and II.2. A fairly rapid convergence 
with increasing number of beams is indicated. The number of beams 
necessary in such a calculation depends on the strength of the planar potential 
and the relativistic particle mass. In the present case, 7-9 beams are sufficient 
for the most closely packed plane, the {111} plane, whereas for the weaker 
{110} and {100} planes, only 5-7 and 3-5 beams, respectively, are needed.

The relative excitation of different Bragg-reflected beams can be directly 
observed in the photographic exposures of the transmitted beam (Fig. 1.5). 
For the {111} plane, both second - and third-order reflections are quite 
important, and of the order of five beams are strongly excited. It may be 
noted that due to the already mentioned split of the {111} plane in a diamond­
type lattice, the second-order Fourier component of the {111} planar poten­
tial vanishes. Thus the second-order beam can only be excited indirectly, 
and the very strong excitation indicated in Fig. 1.5 shows the importance of
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ö/eB
Fig. II.l : Many-beam calculations of the {111} 
peak for 0.7-MeV e*  on Si, including 3, 5, 7, 

and 9 beams, respectively (static lattice).

e/eB
Fig. II.2: Many-beam’calculations of the {110} 
peak for 0.7-MeV e- on Si, including 3, 5, and 

7 beams, respectively (static lattice).

dynamical effects. The two exposures for the {110} plane indicate that for 
this somewhat weaker plane, fewer beams are excited.

In the axial cases, a much larger number of beams are excited simulata- 
eously, as may be appreciated by looking at the Bragg spot patterns in Fig. 
1.8. For the <111> axis, the number of spots is still fairly small, and a cal­
culation analogous to those for planar cases was therefore attempted (see 
Fig. 1.7). The convergence with number of beams is illustrated in Fig. II.3. 
For the <110> axis, the spot pattern in Fig. 1.8 contains many, fairly weak,

i----------- 1----------- ------------ 1----------- r

0 ----------- I--------------- 1-------------- 1_________ _____ I_____________1_________ L_
0 0.5 1 1.5 0 0.5 1 1.5

Fig. II.3: Convergence of axial many-beam 
calculations for 0.7-MeV e- on Si. The number 
of beams included is indicated in the figure. 
For the <111) axis, the equivalent number of 
beams for a {110} planar calculation is given 
in parentheses. In contrast to the calculations 
shown in the previous figures, the most 
important reflections were selected independ­
ently for each angle of incidence. Incoherent 
scattering is neglected, but other effects of 
thermal vibrations are included (cf. Eqs. 
(11.15) and 11.17)). The values of the character­
istic angle ip1 for classical channeling are 0.75° 
and 0.92° for the <111) axis and the <110) 
axis, respectively.
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Fig. II.4 : Axial peak in large-angle scattering 
yield for 0.7-MeV e", derived from a 49-beam 
calculation (cf. Fig. 11.3). The influence of 
incoherent scattering has been estimated by 
including an imaginary component in the 
potential and assuming scattering into plane­
wave states. The magnitude of the imaginary 
Fourier components of the potential has been 
evaluated from an approximation to the results 
given in Ref. 38. The peak derived from this 
calculation is compared to that obtained 
without absorption, multiplied by 0.5, corres­
ponding to the correction for inelastic scatter­
ing applied in Figs. 1.6 and 1.7 (dashed curve).

TILT ANGLE

reflections. This may be related to the complicated transverse arrangement 
of (110) strings and explain the apparent lack of convergence in the many­
beam calculations for this case (see Fig. II.3). Also, the <110/*  axis is some­
what stronger than the (111) axis, and the experimental results were there­
fore compared (in Fig. 1.6) to a classical calculation. It is clear that for a 
strong, narrow potential, two-dimensional Fourier expansion is basically a 
very inefficient method.

Fig. II.5: 20-beam planar calculation 
for e~ on Si. Effects of thermal vi­
bration are included according to Eqs. 
(11.15) and (11.17), and the influence 
of incoherent scattering has been 
estimated as described for the pre­
vious figure.

e/eB
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As mentioned in the previous section, inelastic scattering is normally in 
electron microscopy taken into account by adding an imaginary component 
to the potential, and this treatment may be applied to measurements of large- 
angle scattering if the final states are assumed to be plane waves. Examples 
of results from such a procedure are given in Figs. II.4 and II.5 for the 
<111) axis and the {111} plane, respectively. For the axis, the calculation 
supports the simple estimate of a reduction by a factor of two, which was 
applied in Figs. 1.6 and 1.7. Also for the plane, the result for the thinner 
crystal is in fair agreement with measurement, but for the thicker crystal, 
the calculation does not lead to the narrowing of the peak observed experi­
mentally (Fig. 1.9). It would seem that measurements of the type described 
here could serve as a useful tool to test the description of inelastic scattering.

The main conclusion of the comparison between calculations and experi­
ments is, however, that for small depths, the dynamical theory of electron 
diffraction yields results in good agreement with experiments, at least for 
planes and weaker axes. A similar conclusion was reached for experiments 
with positrons8’9, and we may therefore in the following investigate the 
relation to channeling of heavy particles by studying the relationship of this 
theoretical description with classical channeling theory.



III. Correspondence

III.l. General considerations

The main objective of this investigation of electron and positron chan­
neling has been to study the limits for applicability of classical mechanics 
in the description of channeling phenomena for light particles, and in 
particular the relation between the theory of electron diffraction, as formul­
ated in Chapter II, and classical channeling theory. In the papers by Lind- 
hard5 and Lervig et al.10, the validity of classical orbital pictures in the 
description of collisions with an isolated string was studied in detail with 
emphasis on the case of heavy particles (protons, a paticles, etc.). For this 
case it was concluded that in the limit of high particle velocities, a collision 
with a string of atoms remains classical although classical mechanics does 
not apply to scattering by a single atom since the quantity x, defined in Eq. 
(1.2), becomes small compared to unity.

For channeling of light particles (positrons and electrons), an analysis of 
the interaction with the lattice in terms of scattering of a wave packet by 
isolated strings or planes may not be appropriate, as the requirements of 
localization in space and angular spread smaller than a characteristic angle, 
which for axial channeling is of order10

(III.l)

may be mutually exclusive.
Decisive for this question is the magnitude of the number of bound 

states in the transverse potential minimum. Semiclassically this number may 
be obtained from the available phase space for transverse energy below the 
potential barrier. If there are no bound states the scattering is determined 
by simultaneous interaction with many strings or planes, and no similarity 
with classical results can be expected. In the limit of many bound states, on 
the other hand, the classical picture is approached.
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In the case of axial channeling, positively charged particles with trans­
verse energy below the barrier for penetration through strings are not bound 
to one channel but may move freely between strings except at very low 
transverse energy (‘proper channeling’). Still, the number of states per unit 
cell in the transverse plane (or per string), with transverse energy below the 
barrier for penetration into strings, is an important quantity. Qualitatively 
it may be seen from the fact that many states per unit cell are required to 
form a wave packet which is well localized within this area. More directly, it 
follows from the quantal treatment in Ch. II. The stationary wave equation 
(two-dimensional analogue of Eq. (II.8)) may be reduced to one unit cell 
with periodic boundary conditions, and the conclusions reached in the 
following concerning the behaviour of the solutions of this equation may 
therefore be expected also to apply to the axial case for positive particles, 
with the definition given above for ‘the number of bound states’.

At this point it may be appropriate to discuss the special quantal pheno­
mena caused by the lattice periodicity. Indeed the strong diffraction pheno­
mena observed for electrons and positrons constitute the most striking 
deviation from classical behaviour. The interference due to transverse 
periodicity with period dp may be described as a quantization of transverse 
momentum transfers in bits of ôpt = Znhjdp, corresponding to an angular 
deflection of twice the Bragg angle. This quantization was explicitly dis­
regarded by Lervig et al. on the ground that for particles heavy compared to 
the electron, ôp± is very small. In point of fact, for = pyj^ we have10 

0 for M » m0, (III.2)

where M and Z± are the mass and charge of the incident particles.
Should we not then, as the essential criterion for classical behaviour, 

require that the transverse momentum quantum ôp± be small compared to 
the transverse momentum corresponding to the potential barier Eb, pL = 
= (2MEb)1/2? Although this is a necessary condition, it is not sufficient. 
Also the width of the potential minimum is important since, together with 
the barrier height, it determines the number of bound states.

The interference structure may be smeared by incoherent scattering 
or poor collimation. This, however, only leads to classical results if the 
phase-space criterion is fulfilled such that the quantal description leads to 
a classical envelope with fine structure due to diffraction. In this transition 
region, deviations from classical results due to tunneling may also be expected. 
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Channeled positive particles are prevented from penetrating into the center 
of atoms by the transverse potential barrier. The probability of close en­
counters with atoms is thereby strongly reduced for incidence parallel to an 
axis or plane, and the magnitude of this reduction may be sensitive to the 
probability of tunneling into the classically forbidden regions. Cursory 
estimates of tunneling probabilities for strings and planes, based upon the 
WKB approximation, were given in Ref. 10.

We may conclude these general remarks by considering some charac­
teristic lengths, the relative magnitude of which governs the approach to­
wards the classical picture of channeling. The transverse wavelength 2&, 
which corresponds to a transverse kinetic energy equal to the potential bar­
rier Eb, is given by 2tt/î/(2ME'&)1/2, where M is the relativistic mass of the 
particle. This length may first be compared to the width of the potential 
minimum which, for electrons, is a few times the Thomas-Fermi screening 
distance a and for positrons is of the order of d, the lattice spacing. When 
is small compared to the width, the phase space is large, there will be many 
bound states, and the quantization of transverse energy may be disregarded.

Second, the importance of the quantization of transverse momentum de­
pends on the relative magnitude of 2& and the characteristic lengths for lattice 
periodicity, which again is of order d. If the phase-space criterion is ful­
filled, will be small compared to d, and we may expect interference due 
to periodicity to lead to fine structure only.

Third, penetration into potential barriers is small if the width of the 
barrier is large compared to 2^. For positive particles, the barrier widths 
are of order a or a few times a. Tunneling may therefore lead to important 
modifications of classical results, even if the phase space is relatively large. 
In Ref. 8 it was concluded, however, that the influence of tunneling is 
strongly reduced by the smearing of the distribution of atoms, due to thermal 
vibrations.

III.2. Analogy between quantal and classical descriptions

In the following we shall try to describe in some detail how the quantal 
description of channeling approaches the classical description and illustrate 
the importance of the phase-space criterion. In this connection it is important 
to specify the type of measurement we are considering. We shall be con­
cerned only with predictions of the dependence on incidence direction of the 
yield of a close-encounter process such as large-angle scattering or inner- 
shell excitation. This simplifies the problem considerably since we need not 
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consider in detail the validity of classical orbital pictures in describing particle 
trajectories25 but only the ability of classical mechanics to predict the 
distribution of particles in the transverse direction or plane. A quantal 
treatment was discussed in the previous chapter and for the classical 
description, we may refer to Lindhard’s original treatment5. Numerical 
estimates based upon the two formulations are compared in Ch. IV. In the 
Appendix, an example is given of an analytical calculation based upon the 
classical description.

'fhe physical situation we are concerned with is an external beam of 
particles incident on a single crystal at an angle ip to a major plane (or 
axis), and we ask for the probability PÇip') for particles to come close to the 
center of crystal atoms, as manifested in the yield of a close-encounter 
reaction. Many similarities are apparent between the classical and the quan­
tal treatments of this problem. Owing to the predominance of forward scat­
tering, the motion of the particles may be separated into a longitudinal mo­
tion with nearly constant velocity and a transverse component, which may 
be described as motion in an averaged potential with approximate conser­
vation of the transverse energy (‘continuum approximation’). The pro­
bability P(ip) is then determined in two steps:

First, the probability nÇE^) for a particle with transverse energy E± to 
have a close encounter with an atom is calculated. In the classical treatment, 
this involves finding the probability distribution in transverse space as a 
function of E±, based on statistical arguments. In the quantal treatment, E± 
is quantized. The eigenfunction fP’(.r) belonging to an eigenvalue E^ may be 
calculated from Eqs. (II.8), (II.9), (II.11), and (11.12). The probability 
density in transverse space is given by the square of this eigenfunction. In 
both cases, the reaction yield is assumed to be proportional to the density al 
atomic positions.

Second, the population of transverse-energy levels is determined by 
surface transmission. Classically, a particle hitting the crystal at a distance x 
from a plane acquires a potential energy V(.r), leading to a total transverse 
energy

E± = Exp2+ V(x). (111.3)

Since the intensity of the beam is uniform over the crystal surface, the 
distribution in transverse energy is then given by

W(E\ a - Eip2 - V (.r)) = 2 
i

dV -i

dx X = Xi

(III.4)
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where the æ/s are solutions to Eq. (111.3). Formulae analogous to (III.3) 
and (III.4) hold for the axial case.

In the wave-mechanical formulation, the population of energy levels is 
determined by a matching of the total wave function al the crystal surface to 
the incident plane wave, which yields the coefficients (Eq. (11.21)) of dif­
ferent eigenfunctions. In the expressions for the total probablilitv density in 
the transverse plane, interference between different eigenfunctions is neglect­
ed. In the planar case, this corresponds to the assumption of statistical 
equilibrium in the classical calculation and should be valid for not too 
small thicknesses. Problems related to the assumption of statistical equili­
brium for axial channeling are discussed in Ch. IV and, in more detail, in 
the Appendix. Deviations from equilibrium close to the surface have been 
studied extensively for heavy-particle channeling27 and recently also for 
electron channeling37’ 39.

In the following we shall analyze both of these steps in detail for the one­
dimensional case. In the quantal treatment in Ch. II, the problem of determin­
ing eigenfunctions for the transverse Hamiltonian was reduced to solving the 
Schrödinger equation (II.8) in a finite interval [0,c/p], with periodic bound­
ary conditions according to Eq. (II.9). In order to gain insight into the prop­
erties of such solutions, we consider a simpler analogous problem where the 
particle is confined by infinite potential walls. For the general qualitative 
conclusions concerning the importance of the magnitude of quantum num­
bers, the difference in boundary conditions should not be of any importance 
and, furthermore, the boundary conditions are for strongly bound states 
determined by the local potential minimum and not by periodicity (cf. also 
Sec. IV.2).

111.3. Harmonic oscillator

First, we treat the familiar example of a harmonic oscillator. For many 
physical problems, this is a basic example, which may be solved by analytical 
methods. In fact, the spatial probability density for a particle bound in a 
harmonic potential is used as a standard textbook illustration of correspond­
ence with classical mechanics in the limit of large quantum numbers40. 
According to the general discussion above, evaluation of this density is the 
first task to be performed.

Spatial density. With the potential V(x) =the eigenvalue 
equation becomes
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Fig. III.l : Spatial density for harmonic-oscillator eigenfunctions corresponding to n = 4 and 
n =-- 12, respectively. The classical turning points are indicated by dot-and-dash lines, and the 
classical spatial probability (Eq. (III.9)) is given by the smooth solid curve. The oscillating solid 
curve corresponds to the exact distribution |uM(x)|2 (Eq. (III.7)) and the dashed curve to the 

density obtained from the WKB approximation (Eq. (III.22)).

h2 Q2
---------+ Wx2
2A/d.r2 2

u(æ) = Eii(x). (III.5)

Here, and in the following, the transverse energy is denoted simply by E. 
This equation has the well-known solutions

En = ha>(n + ±'), (III.6)
and

<zn(.r) = NnHn(ax)e-1/2atx\ (III.7)

where a2 = Mco/h, Hn is the n’th Hermite polynomial, and Nn is a normal­
ization constant,

Nn = (111.8)

The probability density, | u(x) |2, is in Fig. III.l compared to the classical 
distribution,

g(æ)
A/m2)1/2----- (E - 4-A/co2x2)-1/2) 
2tz2 / V 2 7 (III.9)

for two values of n. For moderately high n, the distributions are very similar 
except for the rapid oscillations of the quantal density.

3*
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Surface transmission. Corresponding to the case where particles are 
incident on a crystal at an angle <p to a major plane, we now ask for the 
population of the harmonic-oscillator eigenstates for y)(x, t = 0) = eikx, 
where hk denotes the transverse momentum, related to the total momentum 
p by lik = pep. The classical result is

V = E-ft2k2/(2M)
(111.10)

In order to find the quantal distribution, we have to evaluate the matrix 
element

<urø I eikx) dx Hn (ax) e~1/2 ^x2eikx. (III.11)

This integral may be evaluated by repeated partial integration when the 
following represention of the Hermite polynomial is used,

Hn(x) = (- l)«e* ---- e~x, (III.12)
dxn

and the result is

<iin\eikx> = -Nn^2n(- i)n e~kt'<2x"> Hn(k/a). (III.13) 
a

Since Eq. (III.11) is essentially the momentum representation of the n’th 
state, this result, except for a phase factor, also follows directly from the 

d
svmmelry between x and - in the Hamiltonian.

dx
The population of the n’th energy level is given by the square of this 

matrix element,

p(eo - HWr (ni.U)

When this expression is divided by the spacing of levels, hen, the relation 
to the classical energy distribution (III. 10) is the same as the relation be­
tween the quantal and classical spatial densities except for the fact that the 
expressions are now compared as functions of E (cf. Fig. III.3).

Since the main purpose of these considerations is to illustrate the cor­
respondence qualitatively, we shall only for a special case prove that the 
quantal result approaches the classical one in the limit of large quantum 
numbers. Consider the energy distribution (III. 14) for k = 0, corresponding
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Fig. 111.2: Comparison of quantal(Eq. 
(III.5)) and classical (Eq. (III.10)) 
energy distributions for k = 0, cor­
responding to incidence parallel to a 
plane. The two distributions have 
been multiplied by l/2(Mco27tø)1/2. 
Here n denotes the level number, i.e., 
En = (n+l/2)7ta>, and the staircase 
distribution gives the population for 

n even.

for the channeling case to zero angle of incidence with a plane. Only states 
with even parity are then populated, and we may compare the classical den­
sity (Eq. (III.10)) to P(£,2n)/(2/ico). Using the relation H2n(0) = (- l)»(2n)!/n! 
we obtain

P(E2„)/(2Åco)
1 AtV/2 

(71 co)1/2 ■ y 2 j
_(2n)!_
22«(n!)2'

(III.15)

For large n, we may evaluate the factorials by Stirling’s formula,

and obtain

oo

(III.16)

P(£,2n)/(2Aco)
1

(2nhco)V2'
(III.17)

This result is essentially identical to Eq. (III. 10) for k = 0. The distributions 
(III.10) and (III.15) are compared in Fig. III.2.

111.4. WKB approximation

The general approach to the classical description for large quantum 
numbers may be seen more directly in the WKB approximation. This 
semiclassical description oilers a convenient stepping stone from a quantal 
formulation to the classical treatment (cf. also Ref. 25).

Spatial density. A stationary solution to the Schrödinger equation with a 
potential V(æ) may be written

tp(x,f) = C exp{ i(s(x) - Ef)/h}, (III.18)
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where the phase function .s(.r) satisfies

-f-’ï271/\öx y
- [E - V(.r)]

ih d2
2Mdx2

0. (III.19)

The WKB approximation obtains the first two terms of a formal expan­
sion of s in powers of h. In classically allowed regions, (E > V(.r)), the 
general solution in this approximation is40

u£(.r) = I I +AÅ(.'r)-1/2exp
(III.20)

where we have introduced the local wave vector

Â’(æ) = |(2M(E - E(.r)))1/2. 
n

(III.21)

Apart from oscillations due to interference between the two amplitudes 
corresponding to opposite directions of the particle velocity, we have |zz(.r)|2 a 
a (E - V(x))-1/2 as for the classical spatial distribution (cf. Eq. (III.9)). 
The condition for the validity of the WKB approximation is that the fractional 
change in wavelength be small over a distance of one wavelength. Except 
for the regions close to the classical turning points (V(æ) ~ E), this is in the 
case of a potential minimum equivalent to a demand for many nodes in the 
wave function or a large quantum number n.

Surface transmission. Consider for simplicity a symmetric potential 
V(.r) = V(- .r) increasing monotonically to infinity for x -> » with V (x) 0
for x 0. When the solution (Eq. (III.20)) for V < E is matched to the 
WKB solutions in the classically forbidden regions (V > E), the wave 
function becomes40

uE(.r) = Aft (x)-1/2 cos H*  kfx'ydx' (III.22)

Matching to the solution for V > E at the turning points, x = ± a, leads to 
quantization of the energy, determined by40

k(x)dx = (n + ti, n = 0,1,2, . . . (111.23)
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In order to determine the population of eigenstates corresponding to an 
initial wave function f = 0) = e** 0*,  we consider again the matrix 
element

<uE(æ)|ea#a;> = aJä (æ)-1/2 cos f J k(x')dx' --^jeikoX dx. (III.24)

This integral we may evaluate by the stationary-phase method. First, the 
wave function u£(.r) may be written as a sum of two amplitudes correspond­
ing to opposite directions of the velocity (cf. Eq. (III.20)). A stationary 
phase, determined by

is obtained only for the amplitude corresponding to the velocity direction 
given by the sign of k0. For 0 < k0 < /c(0), Eq. (III.25) is fulfilled for two 
values of x, <r = ± Xk, determined by

k( ± x/d) — k0. (III.26)

The contributions from the two x values are then approximately given by the
expression

x

(III.27)

in which the phase has been expanded to second order around the points 
x = ± xjc. When the result (c > 0) 

exp ( ± zc.r2) dx (III.28)

is applied, the magnitude of the two contributions may be evaluated, and we 
obtain

'2zth / %\
P(E) = |<uÆ(x)|ea’a:>l2 = ^A2cos2H (k(x) - k^dx - - (111.29) 

where the argument of the cosine corresponds to half the relative phase of 
the contributions from x = ±.rfc. As for the harmonic oscillator we obtain 
an energy population which oscillates as a function of energy, and we have 
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now seen that this behaviour is caused by interference between the amplitudes 
corresponding to the two points x = ± xk, at which the velocity of a particle 
with energy E matches the well-defined velocity for f = o, n = hk0/M.

In order to compare with the classical energy population,

W(E)dE = 2V'(xk')-1dE, (III.30)

(III.31)
a

normalization constant A and furthermore divide 
AE between eigenstates. The normalization is de-

we must evaluate the
P(E) by the splitting 
termined by,

1cos2

If the condition for the WKB approximation is fulfilled, the potential varies 
only little over one wavelength, and we have approximately

Â'(.r)_1r/x (111.32)

The quantization of energy is given by Eq. (111.23). At high quantum 
numbers, we may evaluate the splitting AE from

With the definition (III.21) of À (æ), this leads to

(III.33)

(111.34)

Combining Eqs. (III.32) and (III.34) with Eq. (III.29), we obtain

P(E)/AE (4/V\.r*))cos 2^J (k(x) - k0)dx - (III.35)

When averaged over the oscillations, this expression is idential to the classical 
result in Eq. (III.30).

It should be noted that the method of evaluation used here is limited to 
energies somewhat larger than classical minimum energy, E = V(0) + 
+ h2Â2/(2ïU). Also, for large values of E, the method breaks down because 
the stationary points ± xk are too close to the classical turning points, where 
the expression (III.22) for the wave function cannot be applied. In these 
regions, we way instead expand the potential to first order around x = ± a
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Fig. 111.3: Population of levels in 
harmonic oscillator for y(x, t = 0) = 
exp(ifcr), with a value of k corres­
ponding to (AAr)2/(2Af) = 4.5 ha>. 
This lower limit for the classical 
energy population is indicated by a 
dot-and-dash line, and the classical 
distribution (Eq.(III.lO)) is given by 
the smooth solid curve. The solid 
staircase distribution corresponds to 
the exact population (Eq. (III.14) 
divided by ha>), while the result 
obtained from the WKB approxim­
ation (Eq. (III.35)) is indicated by 
the dashed lines. Normalization and 
notation as for Fig. III.2.

and represent the wave function by an Airy function. For k = 0, a result 
analogous to Eq. (III.35) is then easily obtained, with the cosine replaced 
by 0 or 1 for odd and even parity, respectively.

We shall not go into the details of such estimates since the main purpose 
of this chapter is to provide some general insight into the correspondence 
between classical and quantal results. Such insight is more readily gained 
from analytical treatments of simple examples than from more realistic 
numerical calculations, as presented in Ch. IV. For this purpose, the WKB 
approximation is particularly helpful, yielding basically classical results 
modulated by oscillations due to interference between different amplitudes.

We conclude this chapter by an assessment of the accuracy of the WKB 
approximation for the harmonic oscillator, which was treated exactly in the 
previous section. Figure III.3 shows the population of different energy 
levels for a plane wave with a k value corresponding to (h/c)2/24Z = 4.5hco. 
The smooth curve is the classical energy distribution given by Eq. (111.10), 
while the staircase distributions correspond to the exact quantal result (Eq. 
(III. 14), fully drawn) and the WKB approximation (Eq. (III.35), dashed). 
Only close to the minimum energy do the two distributions differ enough to 
be drawn separately. It should be noted that for the harmonic oscillator, Eq.
(III.23) reproduces the exact energy quantization. For the spatial density 
distribution, shown in Fig. III.l, the accuracy of the WKB approximation is 
similar, and appreciable deviations from the exact results occur only close to 
the classical turning points. For small values of are, the distributions deviate 
by less than one percent.



IV. Applicability of Classical Calculations to Electron and 
Positron Channeling

In this chapter, we first apply the general qualitative results of the previous 
chapter to obtain approximate criteria for the applicability of classical 
concepts to channeling of electrons and positrons from estimates of the 
number of bound states in the transverse continuum potential According to 
Eq. (III.23), this number may be obtained approximately as the available 
phase space divided by Planck’s constant h (or by h2 in two dimensions).

Second, the transition to the classical limit al high quantum numbers 
is studied quantitatively by a comparison of classical results for the direc­
tional dependence of the large-angle-scattering yield with results obtained 
from the many-beam description reviewed in Ch. II. The calculations also 
provide a check of tiie formulas for the number of bound states derived from 
semiclassical estimates.

IV.1. Number of bound states

The following estimates correspond closely to those given in previous 
work8-13. Also in the review by Gemmel27, such estimates were given. For 
the planar case, our results are essentially in agreement, apart from a 
trivial mistake by a factor of two in his formulas. For axial channeling of 
negative particles, there is a more important difference in method as well as 
result.

Planes. The planar potential is illustrated in Fig. IV. 1 for positive particles. 
We base the estimates of the phase space upon Lindhard’s standard potent­
ial, which for a particle with one positive charge, leads to the planar potential.

V(x) = 2nZ2e2Ndp[(x2 + C2a2y/2 - x\, (IV.1)

where NdP is the density of atoms in the planes, dp being the planar spacing. 
The width of the potential maximum is approximately 3Ca, where a is the 
Thomas-Fermi screening distance and C a potential parameter, C ~ |/3 •
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Fig. IV. 1: Si {110} planar potential 
for positrons. The potential from a 
single plane is represented by the 
dashed curve (Eq. (IV.l)), while the 
solid curve is obtained by adding the 
potential from the neighbouring plane. 
The phase-space estimates are based 
on the latter potential.

The number of bound states in the potential is given by

vp ~ i- (dpC2M(Vmax-V)y/2d.r, 
Tin J o

(IV.2)

where M is the relativistic particle mass.
From a numerical integration of (IV.2), we obtain for negative particles a 

result corresponding approximately to a square-well potential with depth 
V(0) given by Eq. (IV.l), and width ~ 3Ca, 

(IV.3)

where zn0 is the electron rest mass and o0 the Bohr radius, a0 = 0.53 Ä. For 
positive particles, the potential minimum is wider by a factor of dp/(3Ca), 
and Eq. (IV.2) leads to

/ M\1/2
V+V ~ l m I cv.4)

The ratio of these two numbers is approximately

viivp zi13-

Even for strong planes, the estimate (IV.3) leads to a number of bound states 
of the order of unity, v~ ~ 1 for electrons of not too high energy. In contrast, 
for positrons, the potential minimum between planes may often contain quite 
a few bound states. We shall return to a more detailed comparison of negative 
and positive particles below.
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Strings. For negative particles, the number of bound states in a string 
potential is given by

v~ ço ---  f (72f f d2p.8 4n2h2J J 71

where = jd^/(2M) + U{r'), and we have assumed that the continuum 
potential vanishes far from strings. Performing the integration over transverse 
momentum, we obtain

< (IV'7)

(IV.6)
Ey < 0 ,

Again we may introduce the standard potential, which for strings leads to

(IV.8)

where d denotes the spacing of the atoms in the string. This corresponds to 
a rotationally symmetric potential inside the area, tt/q = (A57)"1, belonging 
to one string. Subtracting the value U(r0) from Eq. (IV.8), we obtain from
Eq. (IV.7)

Z2e2 /d (Ca)2logl
-Y 

Cay
(IV.9)

Since normally the log term in (IV.9) is of order 3-4, we obtain11

(IV. 10)

By partial integration, the formula (IV.7) may also be expressed in terms of 
the average square radius of the atoms,

oc
</î2> = Z21 4~iRi0(R)dR, (IV.11)

J 0

where q(R) is the electron density belonging to one atom. The result is

M
2h2

(IV. 12)

For the somewhat more realistic Lenz-Jensen potential, the average-square 
radius becomes5 <7?2> ~ 15a2, which again leads to (IV. 10). For 1-MeV electrons, 
this formula gives a number of bound states v~ ~ 4-10 for a major axis.
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For positive particles, the accessible area per string is ~ nr^. If the 
effective transverse-energy barrier is ~ corresponding to a critical
angle10,

(IV.13)

we obtain for the number of bound states (or rather states per string with 
energy below the barrier, cf. sec. III.l).

-(-)(— W3)'1- (IV.14)

\™o/

This number is normally quite large, vf ~ 102 for 1-MeV positrons.
Comparison of different cases. The relationship between the four es­

timates, Eqs. (IV.3), (IV.4), (IV.10), and (IV.14) is illustrated in Table IV.1 
for 1-MeV electrons and positrons along a {110} plane and a <110> axis, 
respectively, in silicon and gold.

Table IV. 1.
Number of bound states for 1-Mev e+, e~ in Si and Au.

Silicon Gold

e+ e~ e+ e~

<110> 34 4 286 9

{110} 2.5 1.1 9 1.5

These examples clearly indicate the importance of distinguishing bet­
ween positive and negative particles as well as between axial and planar 
cases. The difference in magnitude of the number of bound states for axes 
and planes is, to a large extent, due to the fact that the axial potential is two- 
dimensional, while the planar potential is one-dimensional. It might therefore 
be argued that the number of bound states in the planar potential should be 
compared to the square root of the corresponding number for strings. This, 
however, would not change the qualitative conclusion drawn from Table
IV. 1, that classical concepts may be applied more readily to axial than to 
planar motion. This difference is strongest for high values of Z2 where also 
the difference between electrons and positrons is most pronounced.

Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 10. 4
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IV.2.  Comparison of classical and quantal calculations

Although the approach towards a classical description is basically 
governed by the magnitude of quantum numbers, as derived semiclassically 
above, it must be borne in mind that the validity of classical estimates may 
depend strongly on the specific phenomenon under observation. In this sec­
tion, we shall compare directly quantal and classical calculations of the di­
rectional dependence of close-encounter yields34. The quantal calculations 
are based on the many-beam description, reviewed in Ch. II, which was 
seen to describe the experimental results fairly well, at least for planes. 
From such calculations, also the transverse energy levels are determined, 
and first we shall compare the number of bound states with the semiclassical 
estimates.

Bound states. The transverse energy levels for electrons and positrons 
moving along a {110} plane in silicon are shown in Fig. IV.2, as functions 
of projectile energy. Zero on the ordinate scale corresponds to a transverse 
energy equal to the potential maximum (cf. Fig. IV. 1). The levels are shown 
for incidence parallel to the plane as well as for an indidence angle equal to 
the Bragg angle. For negative transverse energy, corresponding to a bound 
state, the levels become independent of incidence angle because the compo­
nents of the wave function belonging to different planar channels no longer 
communicate. Owing to the difference in shape of the potentials (cf. Fig.
IV. 1), this happens more rapidly with decreasing transverse energy for 
electrons than for positrons.

In Fig. IV.3, the number of bound states is shown compared to the es­
timates, Eqs. (IV.3) and (IV.4), derived in the previous section. Also shown 
in the figure are results obtained for electrons moving along a < 111 > axis, 
compared to the estimate in Eq. (IV. 10). For this axis, the many-beam 
calculations were in Sec. II.7 shown to converge reasonably well with number 
of beams for an electron energy of 0.7 MeV, but for higher energies, the 
convergence is more doubtful, and the number of bound states may be 
slightly underestimated. In any case, the agreement is quite good for the 
axial as well as for the planar cases, considering the approximate nature of 
the semiclassical estimates. In particular, the predicted differences in both 
absolute magnitude and energy dependence are clearly confirmed.

Close-encounter yield. For the comparison between calculations of the 
yield of a close-encounter process such as large-angle scattering, we con­
centrate on the planar case. First, the many-beam calculation is technically 
simpler and more reliable in this case, owing to the rapid convergence with
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Fig. IV.2 : Transverse energy levels for 
e- and e+ incident along a{ 110} plane 
in Si, as a function of projectile energy. 
The results are obtained from 20- 
beam calculations with a thermally 
averaged (Eq. (III.17)) Molière po­
tential41. The levels indicated by solid 
and dashed curves are obtained for 
projectile incidence parallel to the 
plane and at the Bragg angle, re­
spectively. Zero on the ordinate scales 
corresponds to the maximum of the 
Molière planar potentials (similar to 

the potential shown in Fig. IV.l).

number of beams. Second, the classical limit is less well-defined in the axial 
case, at least for electrons. The classical result derived in the Appendix is 
based on statistical equilibrium on an energy shell in transverse phase space. 
In the planar case, this assumption simply leads to results corresponding to 
an average over depth of penetration, and it is equivalent to the assumption 
in the quantal calculation of random relative phases of eigenfunctions. For 
axial channeling, the assumption is based on more subtle arguments, as dis­
cussed in the Appendix.

Results for planar channeling of electrons and positrons along a {110} 
plane in silicon are shown in Figs. IV.4 and IV.5. A rapid convergence to­
wards the classical result is indicated, but in contrast to the expectation 
based on the number of bound states shown in Fig. IV.3, the classical results 
seem to be somewhat more accurate for electrons than for positrons. In 
particular is the interference structure at Bragg angles considerably stronger 
for positrons. This may, however, not be so surprising when we consider the

Fig. IV.3: Comparison of the number 
of bound states derived from Fig. IV.2 
with the semiclassical estimates (Eqs. 
(IV.3) and (IV.4). Also shown are re­
sults for a (111) axis derived from a 
60-beam calculation and compared to

Eq. (IV.10).

4*
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ip/ipp

Fig. IV.4: Comparison of classical and quantal calculations of the peak in large-angle-scattering 
yield for electrons incident on Si along a{110} plane. The classical yield is derived from formulas 
analogous to those given in Ref. 29 for positive particles, with a thermally averaged Molière 
planar potential41, including the contributions from the neighbouring plane (cf. Fig. IV.l). The 
quantal result is obtained from a 20-beam calculation (Eq. (11.23)), also with the Molière potential 
and including effects of thermal vibrations (Eqs. (11.15) and (11.17)). The classical result scales 
with the planar characteristic angle = ^(Ca/d)1'2, where d is defined through Nd2dp = 1 
(Ref. 29). For each projectile energy, the magnitude of the Bragg angle Qp is indicated (classical 

calculations: dashed curves; quantal calculations: solid curves).

fact that the close-encounter yield is proportional to the intensity of the trans­
verse wave function at the atomic positions. For negative projectiles, lattice 
atoms are situated in a potential minimum, while for positive particles they 
are at potential maximum. In the latter case, the results therefore depend 
on the intensity of wave functions close to or inside classically forbidden re­
gions, where the strongest deviations from classical behaviour occur. (Note 
also that for silicon, the difference in number of bound states between e+ 
and e~ is small (cf. Table IV.l).

In spite of the difficulties for axes mentioned above, it may be of interest 
to compare the quantal and classical calculations also for this case. A set of 
calculations for electrons incident along a <111> axis is shown in Fig. IV.6. 
At the higher energies, the agreement is, in fact, rather good. It should be 
noted that neither of the calculations need correspond very closely to reality. 
The neglect of inelastic scattering is for axial channeling of negative par-
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Fig. IV.5: Comparison of quantal (solid curves) and classical (dashed curves) results for positronss 
incident along {110} plane in Si. For details of the calculations, see Fig. IV.4.

Fig. IV.6: Axial peaks in large-angle-scattering yield for elctrons incident along a<lll}> direction 
in Si. Quantal results obtained from 60-beam calculations with Molière potential (formula anal­
ogous to Eq. (11.23)) (solid curves). Classical results derived in the Appendix (Eq. (A21)), with 

the standard potential (Eq. (IV.8)) (dashed curves). 
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tides hardly justified even at rather shallow depths since the collisional 
broadening of closely bound states will be very large. But a statistical treat­
ment is obviously much simplified if classical concepts may be applied, and 
this should be justified when the volume in phase-space available to bound 
particles is large enough to correspond to many quantum states.

Finally, for axial channeling of positive particles, the number of “bound” 
states is very large (cf. Eq. (IV. 14) and Table IV. 1), and therefore the number 
of beams needed in a many-beam calculation becomes prohibitively large. 
However, a comparison of experimental results for positrons and protons in­
dicates8’9 that for this case, a classical treatment should be justified.
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Appendix: Classical Estimate for Axial Electron Channeling

In this appendix we shall derive the expression for the axial peak in 
yield for negative particles, which was used in Chapter IV for comparison 
with results from “many-beam” calculations. The calculation is based on a 
classical description of the particle motion. The transverse energy of the 
particles is assumed to be conserved, and for fixed transverse energy, their 
trajectories are assumed to fill out the transverse four-dimensional phase­
space uniformly. We shall not discuss the validity of these assumptions in 
detail, but to put the results in perspective it may be useful to review briefly 
the situation for channeling of positive particles, which has been studied 
much more thoroughly.

Conservation of transverse energy for channeled particles is the basis of 
the channeling phenomenon and was discussed in detail by Lindhard5. 
At large depths of penetration, the distribution in transverse energy is mod­
ified due to multiple scattering by electrons and by the small lattice irregular­
ities introduced by the thermal motion of lattice atoms. The effect of these 
“dechanneling” processes may be calculated with reasonable accuracy from 
a diffusion equation5- 42> 43.

Statistical equilibrium, on the other hand, will be established only 
after a finite depth of penetration. The trend towards equilibrium was 
studied by Lindhard5. It was shown that when strings are assumed to be 
randomly distributed in the transverse plane, scattering of the channeled 
particles by these strings leads to a rapid approach towards equilibrium in 
transverse-momentum space, the characteristic length being much shorter 
than that corresponding to dechanneling. At smaller depths, results based on 
equilibrium may often be interpreted as corresponding to simple averages 
over azimuthal angle of incidence with respect to a string, and averages over 
oscillations with depth. As emphasized mainly by Barrett44- 45, such an 
interpretation may not hold in special cases, for example, for the yield of 
close-encounter reactions for incidence parallel to a string, which at small 
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depths is higher than estimated from equilibrium by an average factor of 2 
to 3. This is a consequence of the regular lattice arrangement of strings, 
which introduces additional approximately conserved quantities, namely 
transverse energy with respect to planes (or strings of strings5). This will 
hinder the approach towards equilibrium. A treatment in terms of equi­
librium in restricted regions of phase space seems, however, straightforward 
but has not yet been carried out in detail46.

Thus for positive particles, the approximations of conservation of trans­
verse energy and statistical equilibrium are consistent and provide a good 
starting point for a treatment of channeling phenomena. Deviations from these 
assumptions may then be treated as corrections to the basic picture. For 
negative particles, however, the situation is less clear. First, multiple scat­
tering is stronger than for positive particles since the atomic scattering centers 
are situated at a minimum of the transverse potential. Second, the peak in 
yield is largely due to particles bound in an axial-potential minimum. Such 
particles interact with only one string, and since the potential is nearly 
symmetric around the string, angular momentum with respect to this string 
will be approximately conserved (Rosette motion47). Multiple scattering may, 
however, be strong enough to provide a trend towards equilibrium. In fact, 
the scattering is strong enough to make the description of the most strongly 
bound states somewhat uncertain. In the following we disregard these 
problems and base our treatment upon conservation of transverse energy and 
statistical equilibrium. The calculations can at least serve as an illustration 
of the classical treatment, which was discussed in Sec. III.2 and may, as for 
positive particles, provide a useful standard for comparison, also of experi­
mental results6’13 (see also Fig. 1.6).

Emission

The derivation is analogous to that in Ref. 5 of the dip in yield for positive 
particles in the continuum approximation. We use the same notation and 
also consider emission of particles from a lattice atom, i.e., blocking rather 
than channeling. The two cases are related by reversibility5 or reciprocity7. 
If electrons with momentum p and velocity v are emitted isotropically from 
an atom at a distance r from a string, their distribution in transverse energy, 
Si» is given by

f I 1 for E, > U(r)
^(E^r) - d(E?a)ô(E1 - E(r) - Ey2) - ! 1 . (Al)

J 1 0 for E± < E(r)
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Here, E = 1/2 pu = 1/2 Mu2, where M is the relativistic mass (cf. Ch. II). 
The angle with the string is denoted <p so that Ey2 is the transverse kinetic 
energy. The transverse potential energy is determined hv the average string 
potential L7(r). In the following calculations, we once more apply Lindhard’s

standard potential,

(A2)

where is the characteristic angle for axial channeling (Eq. (IV. 13)), a 
the screening distance, and C ea j/3.

The probability of different displacements r is determined by thermal 
vibrations and denoted dP(r). For the distribution in transverse energy 
averaged over displacements, we obtain

71 (E±) =
j dP(r)J d(Ecp2)ô(Et -U(r)-E<p2)

By inserting into this formula the standard potential and a Gaussian dis­
placement distribution, Lindhard obtained a simple analytical estimate of 
the dip in yield for positive particles.

Surface transmission
When the emitted particles pass the crystal surface, the transverse 

potential energy is lost and the angle y> with the string after transmission is 
determined by Eip2 = E - U(r). For the distribution in angle outside the 
crystal, we may write

P(E>2) -(dEJÇE^E^nÇEj), (A4)

where T(EX, Ey)2)d(Eip2) is the probability for a particle with transverse energy 
E in the crystal to leave the surface at an angle ip to the string. This pro­
bability is determined by the spatial probability density of particles with 
transverse energy E±. In statistical equilibrium, the density in two dimensions 
is uniform in the allowed area, and we obtain

r° d (r2)-^-ô(Eip2-E1+U(r)). (A5)
0r(EC

Here we have, as usual, approximated the area per string in the transverse 
plane by a circular disc of radius r0, related to the spacing d of atoms in 
the string through nr2Q = (Nd)-1, where N is the density of atoms in the 
crystal. The radius f of the accessible area is given by
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G(f) = El for 

r = r0 for

< L/(r0)

> [7(r0)

By combining (A4) and (A5), we obtain

(A6)

(A7)

While for positive particles the difference between the distributions P(Ey>2) 
and tc(P±) implied by (A7) is important for Exp2 ~ 0 only29, the surface 
transmission is of major importance for negative particles. The two distri­
butions are completely different. The function n(E^) defined by (A3) is 
below unity for all values of and has a tail stretching to E.-+ — æ, 
while P is only defined for Exp2 > 0 and has a strong increase above unity at 
Exp2 22 0. This peak contains the particles which inside the crystal have 
negative transverse energy, i.e., which are bound in the string potential.

Inserting into (A7) the emission distribution (A3), we obtain

(A3)

From this expression it is seen that P > 1. Thus the peak in yield at small 
angles xp is not compensated for by a descrease below unity at larger angles. 
This lack of compensation is a characteristic feature of the continuum string 
approximation5. In the refined treatment by halfway planes, negative 
‘shoulders’ stretching out to angles ~ 2a/d compensate for the excess yield at 
small angles.

Peak height
From formula (A8), we may calculate the peak height P(0),

By inserting a Gaussian distribution,

dP(r') Q « Gj.

(A9)

(A10)
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we obtain by partial integration

(All)

where y is Euler’s constant, y = 1.78. This estimate may be compared to 
the corresponding estimate in Ref. 11 for the standard potential with a
cut-off,

f 9 Ca
(.Yr) , r < Ca

|o
, r > Ca

leading to

P(0) ~ 1 + for Ca » g

(Al 2)

(Al 3)

While (All) leads to /J(0) ~ 5-6, formula (A13) predicts a value of P(0) ~ 
2-3. Since the potential decreases very rapidly and is essentially flat at large 
distances, the implicit assumption in the derivation of (All) of an attractive 
potential at all distances r may not be valid at distances r ~ r0. The cut-off 
at r = Ca in the potential (Al2), however, is probably at too small a distance 
Thus the two values may reasonably be regarded as upper and lower limits, 
respectively.

Angular dependence
With the potential (Al2) it is easily seen that the excess yield in (Al3) 

is multiplied by a factor exp(-2Eip2/Eip[) for particles incident at an angle 
ip to the string,

P(Eip2) ~ 1 + for Ca » q (A14)

as given in Ref. 11.
In order to obtain a reasonably simple analytical estimate with the 

standard potential (A2), we replace the Gaussian displacement distribution 
(A10) by

r' < Qo

r’ > Qo

(Al 5)

Inserting this distribution into (A9), we obtain for the peak height
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P(0) = 1 + log^. (Al 6)

In order to reproduce the result (All), we choose

(Al 7)

With the distribution (Al5), the integration in (AS) is straightforward,

r2(Eip2 + U (r))
(AIS)

where rx and r2 are determined by

t7(n) = U(Qo) - Erp2

U(fz) = U(r0) - Erp2.
(A19)

The two first terms correspond to bound particles with a maximum distance 
to the string not exceeding q0 and r0, respectively, while the third term 
corresponds to unbound particles. All integrations are elementary, and we 
obtain,

P(Erp2) = 1 + e-^^logCrllrl) (A20)

or inserting the value (Al9) for and r2,

|(Cu)2 + ?02]e2W ^2 I

|(Ca)2 + r2] e2^ - f ‘ (A21)

This formula is rather similar to (Al 4) for not too small angles. As might 
be expected, however, the inclusion of the outer shallow part of the potential 
leads to a steep increase in yield at small angles. In fact, the peak height is 
larger by a factor of ~ 2, and the full width at half maximum is therefore sig­
nificantly smaller than the value dip = |/21og2 derived from Eq. (A14).



References
1) E. Bøgh, J. A. Davies, and K. O. Nielsen, Phys. Letters 12, 129 (1964).
2) B. Domeij and K. Björkqvist, Phys. Letters 14, 127 (1965).
3) G. Astner, I. Bergstrom, B. Domeij, L. Eriksson, and A. Persson, Phys. 

Letters, 14, 308 (1965).
4) E. Uggerhøj, Phys. Letters 22, 382 (1966).
5) J. Lindhard, Mat.-Fys. Medd. Dan. Vid. Selsk. 34, No 14 (1965).
6) E. Uggerhøj and J. U. Andersen, Can. J. Phys. 46, 543 (1968).
7) M. von Laue, Materiewellen und Ihre Interferenzen (Akademische Verlags­

gesellschaft, Leipzig, 1948).
8) J. U. Andersen, W. M. Augustyniak, and E. Uggerhøj, Phys. Rev. B3, 705 

(1971).
9) M. J. Pedersen, J. U. Andersen, and W. M. Augustyniak, Rad. Effects 12, 

47 (1972).
10) P. Lervig, J. Lindhard, and V. Nielsen, Nucl. Phys. A96, 481 (1967).
11) J. Lindhard, Atomic Collision Phenomena in Solids (North Holland Publishing 

Co., Amsterdam, 1970), p. 1.
12) E. Uggerhøj and F. Frandsen, Phys. Rev. B2, 582 (1970).
13) S. Kjær Andersen, F. Bell, F. Frandsen, and E. Uggerhøj, Phys. Rev. B8, 

4913 (1973).
14) P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, 

Electron Microscopy of Thin Crystals (Butterworths, 1965); se also A. Ilowie in 
Modern Diffraction and Imaging Techniques in Materials Science (North-Holland, 
Amsterdam 1970), p. 295.

15) P. B. Hirsch, A. Howie, and M. J. Whelan, Phil. Mag. 7, 2095 (1962).
16) P. Duncomb, Phil. Mag. 7, 2101 (1962).
17) C. R. Hall, Proc. Roy. Soc. A295, 140 (1966).
18) A. Howie, M. S. Spring, and P. N. Tomlinson, Atomic Collision Phenomena in 

Solids (North Holland Publishing Company, Amsterdam, 1970), p. 34; see also 
P. N. Tomlinson and A. Howie, Phys. Letters 27 A, 491 (1968).

19) M. J. Whelan, Atomic Collision Phenomena in Solids (North-Holland Publishing 
Company, Amsterdam, 1970), p. 3.

20) A. Howie, Phil. Mag. 14 223 (1966), and Brookhaven National Laboratory, 
Report No 50083, Solid State Physics with Accelerators (1967) p. 15.

21) R. E. De Wames and W. F. Hall, Acta Cryst. A24, 206 (1968).
22) R. E. De Wames, W. F. Hall, and G. W. Lehmann, Phys. Rev. 174, 392 (1968).
23) L. T. Chadderton, Phil. Mag. 18, 1017 (1968).



58 Nr. 10

24) L. T. Ghadderton, J. Appl. Cryst. 3, 429 (1970).
25) M. V. Berry, J. Phys. C 4, 697 (1971).
26) M. V. Berry, Rad. Effects 27, 1 (1973).
27) D. S. Gemmel, Rev. Mod. Phys. 4G, 129 (1974).
28) L. T. Ghadderton in Channeling, ed. D. V. Morgan (Wiley, N. Y. 1973).
29) J. U. Andersen, Mat. Fys. Medd. Dan. Vid. Selsk. 3G No. 7 (1967), J. U. Ander­

sen and L. C. Feldman, Phys. Rev. Bl, 2063 (1970).
30) J. U. Andersen, J. A. Davies, K. O. Nielsen, and S. L. Andersen, Nucl. 

Instr. Methods 38, 210 (1965).
31) N. Bohr, Mat.-Fys. Medd. Dan. Vid. Selsk. 18 No 8 (1948).
32) E. Keil, E. Zeitler, and W. Zinn, Z. Naturforsch. 15 a, 1031 (1960).
33) F. Fujimoto, S. Takagi, K. Komaki, H. Koike, and Y. Uchida, Rad. Effects 

12, 153 (1972).
34) S. Kjær Andersen, Thesis, University of Aarhus (1974).
35) A. Howie and R. M. Stern, Z. Naturforschung 27 a, 382 (1972).
36) J. P. Spencer, C. J. Humphreys, and P. B. Hirsch, Phil. Mag. 2G, 193 (1972).
37) Y. Kagan and Y. V. Kononets, Zh. Edsp. Teor. Fiz. 58, 226 (1970). 

[Sov. Phys. -JETP 31, 124 (1970)].
38) C. J. Humphreys and P. B. Hirsch, Phil. Mag. 18, 115 (1968).
39) D. Cherns, A. Howie, and M. H. Jacobs, Z. Naturforsch. 28 a, 565 (1973).
40) D. Bohm, Quantum Theory (Prentice-Hall, N. Y. 1951)
41) B. R. Appleton, C. Erginsoy, and W. M. Gibson, Phys. Rev. 161, 330 (1967).
42) E. Bonderup, FI. Esbensen, J. U. Andersen, and H. E. Schiott, Rad. Effects 

12, 261 (1972).
43) FI. E. Schiott, E. Bonderup, J. U. Andersen, FI. Esbensen, M. J. Pedersen, 

D. J. Elliott, and E. Lægsgaard, in Proc. 5th Gonf. on Atomic Collisions in 
Solids, Gatlinburg, Tenn., Vol. 2, p. 843 (1973).

44) J. H. Barrett, Phys. Rev. 166, 219 (1968).
45) J. H. Barrett, Phys. Rev. Letters 31, 1542 (1973).
46) J. A. Golovchenko, Phys. Rev. B13, 4672 (1976).
47) H. Kumm, F. Bell, R. Sizmann. and H. J. Kreiner, Rad. Effects 12, 53 (1972).

Indleveret til Selskabet august 1976.
Færdig fra trykkeriet september 1977.



PETER SIGMUND

CLASSICAL SCATTERING 
OF CHARGED PARTICLES BY 

MOLECULES
Single and Multiple Collisions at Small Angles

Det Kongelige Danske Videnskabernes Selskab
Matematisk-fysiske Meddelelser 39, 11

Kommissionær: Munksgaard

København 1977



Table of Contents
Pages

1. Introduction..................................................................................................................... 3
2. General Description...................................................................................................... 4
3. Binary Molecules. General......................................................................................... 6
4. Binary Molecules. Evaluation of the Transport Cross Section........................ 7
5. Power Scattering............................................................................................................ 8
6. Single Scattering. Differential and Incomplete Total Cross Section............... 9
7. Application: Thomas-Fermi Scattering for Homonuclear Diatomic Target

Molecule......................................................................................................................... 12
8. Multiple Scattering. Angular and Lateral Distributions ................................ 14
9. Application: Multiple Scattering on Diatomic Homonuclear Molecules... 19

10. Polyatomic Molecules.................................................................................................... 21
11. Polyatomic Molecules: Single Scattering............................................................. 26
12. Polyatomic Molecules: Multiple Scattering ......................................................... 27
13. Summary........................................................................................................................... 28

Acknowledgements........................................................................................................ 29
Appendix A...................................................................................................................... 29
Appendix B....................................................................................................................... 31
Deferences......................................................................................................................... 32

Synopsis

The effect of molecular geometry on single and multiple scattering of charged particles off 
molecules is investigated theoretically. The treatment is based on classical scattering theory and 
is valid at small scattering angles. Two limiting cases are identified; a short-range limit where 
atoms within a molecule act as separate scattering centers, and a long-range limit, where a 
molecule acts as one scattering center. The transition region is shown to fall into the range of 
impact parameters corresponding to moderately screened Coulomb scattering, i.e., the typical 
Thomas-Fermi scattering region. General expressions are derived for single-collision cross sec­
tions valid in each limit and in the transition region, and for the half-widths of angular and 
lateral multiple-scattering distributions. Comments are made upon the behaviour of the shape 
of multiple-scattering profiles. Quantitative results are based on the power approximation to 
the Thomas-Fermi and Lenz-Jensen interaction. Comparison with recent experimental results 
on multiple-scattering half-widths for theP/>+— N2 system shows excellent agreement. Even more 
pronounced effects are predicted for polyatomic molecules.
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1. Introduction

When asked to describe the interaction between an energetic particle 
and a molecule, you will most likely choose one of two simplifications as 
your starting point. Either you consider the molecule as one target particle, 
with a suitably simplified shape (spherical, linear, etc.), or you treat it as 
being composed of independent atoms. Which of the two simplifications you 
will judge to be the more appropriate one depends on the effective range of 
interaction. In typical molecular-beam experiments, at eV energies or below, 
collision partners interact at distances well up to, and greater than, inter- 
nuclear distances in molecules, hence the first description is likely to be pre­
ferred. Conversely, MeV or more energetic particles have their most violent 
encounters at very small internuclear distances, whence the second descrip­
tion might seem more appropriate. Indeed, a very customary approach to 
penetration problems in molecular solid or gaseous targets is to ignore 
molecular structure altogether, and to consider instead a mixture of ran­
domly distributed atoms of the right overall density and composition.

There must be an intermediate situation where neither description is 
appropriate. As an example, let the typical interaction distance be of the 
order of one half the internuclear distance in a binary target molecule, and 
let the target be a dilute gas of such binary molecules. Then, every collision 
of the projectile with one target atom is accompanied by another collision 
with the other atom in the molecule. While the impact parameter specifying 
the first collision is distributed al random, the corresponding quantity for 
the second collision is obviously correlated. Whereas in an atomic gas of 
equal composition all collisions would obey a random distribution of im­
pact parameters, only half of them do so in the molecular gas. Thus, mole­
cular geometry has an influence on the spectral distribution of energy loss, 
deflection angles, and excitation phenomena. It is the purpose of this paper 
to investigate the influence of molecular geometry on small-angle single and 
multiple scattering of a beam of charged particles penetrating a molecular 
gas. In a related paper, the corresponding problem of energy loss is treated1. 
A short note reporting some conclusions of the present work as well as 
experimental results on multiple scattering by molecules has appeared 
recently2.

1*
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The geometric effects discussed in this paper are characteristic ol‘ such 
scattering processes where the trajectory of the scattered particle as well as 
the location of the scatterer are well-defined in terms of a classical-orbit 
picture. There is a broad range of heavv-particle scattering processes, 
initial energies, and scattering angles where the scattering cross sections 
derived from classical dynamics can be applied in the analysis. These in­
clude the scattering of J/eV fission fragments in solids or gases at the one 
end, and the scattering of keV or even eV helium and hydrogen ions in 
dilute gas targets at the other end. Criteria for the validity of a classical- 
orbital picture have been established3’4), and are fulfilled in those cases 
where numerical results are given in this paper. Experimental work has 
been reviewed recently5’6).

The present analysis has been developed in close analogy and simul­
taneously with related work on energy loss1, and the outline of this paper 
has been deliberately chosen to be that of a follow-up. Although the presen­
tation is hopefully self-contained, you may find it advantageous to first have 
a look at the simpler, 1-dimensional problem of energy loss.

2. General Description

Let a charged particle (usually an energetic ion) pass by a molecule 
(Fig. 1) at a vector distance p from some point Q that specifies the position 
of the molecule. Throughout this paper, we only consider situations where 
the deflection of the projectile at the molecule (and at its constituent atoms) 
is so small that the trajectory can be approximated by a straight line over the 
range of interaction with the molecule. This implies high velocity and/or 
large impact parameter p(= |p|). Within the region of validity of classical 
scattering, the ion is scattered by some angle

<P = 9<P>ß)» 

where Q stands for three or two angles that specify the orientation of the 
target molecule with respect to the direction of motion of the projectile. 
We shall assume that <p is also small in an absolute sense, such that the 
direction of motion of a scattered ion is determined by a small increment

9 = <?(P.^) (1)

to be added (and perpendicular to) the unit vector along the initial direction 
(Fig. 1). With that direction representing a polar axis, we can introduce an 
“impact plane” perpendicular to it; this plane contains the ‘2-dimensional
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Final Direction
Fig. 1. Geometry of charged-particle scattering on a molecule.

vectors p and 9. In accordance with the conventional concept of a cross 
section we denote the quantity

da = K(q)d2q = c/2cpfc/2pô((p — q>(p,£?)) (2)

the differential cross section for scattering into the solid angle d2<p at 9, 
where <5 is the Dirac delta funtion in two dimensions, and d2p an element 
of the impact plane (Fig. 1).

Eq. (2) applies to a polarized gas, i.e. where all target molecules have 
the same orientation _Q. For random orientation, we generalize (2) so that

Ä(?) = fdäp<d(q> - <p(p,ß))>ö , (2')

where <. . . indicates an average over all orientations.
It will be convenient in the following to carry on the analysis in the 

Fourier space conjugate to 9. In order to avoid the complications of a pos­
sible divergency at 9 = 0, we consider the transport cross section

<7(k) = Jrf2<pK(<p)(l - eik ‘p) - fd2p<(l - eik ’’<"-'5>»o , (3) 
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from which the differential cross section can be recovered7 by inverse 
Fourier transformation,

7<((p) = - - f d2k cr(k)e“lk’<p for 9 0. (4)
(2%)2 J

3. Binary Molecules. General

Let us first consider a binary target molecule. The total deflection 9 is 
then composed of two parts,

9 = <pi + <p2, (5)

i.e., the respective (vectorial) scattering angles belonging to the constituent 
atoms 1 and 2 of the molecule. Such a division is straight forward in case 
of a hypothetical molecule consisting of two nonoverlapping target atoms. 
In real molecules, the region of overlapping electron shells is occupied by 
valence electrons; these contribute to scattering only in a certain class of 
(very soft) collisions. In cases where this is important, scattering regions for 
atoms 1 and 2 may have to be defined. In case of a minor contribution of 
valence electrons to the scattering potential, the above picture of a molecule 
consisting of two unperturbed target atoms appears acceptable. This im­
plies that the individual scattering vectors in (5) exhibit radial symmetry,

= <Pi(Pi) = (pi(pi)Pilpi, i = L 2. (6)

where pi and p2 are distance vectors from the two target nuclei to the 
trajectory (Fig. 2), and pi = |p?| the individual impact parameters.

Eq. (3) can now be written in the form

a(k) = <fd2p(l - e*k-(<Pi(P*)  + (tMp2))>ß ,

which can be rearranged in the form

o-(k) = cri(k) + <72(k) + ôor(k). (7)
Here,

<7f(k) - <frf2pH - 1-1,2, (8)

with dcTj(9) being the differential cross section of atom i; because of (6), the 
rotational average has no effect on eq. (8). The following interference term 
remains,

<5a(k) = _ eîk-<p1(p.))(1 _ cik-<MP,))>ß . (g)
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Fig. 2. Geometry of charged-particle scattering on a diatomic molecule.

this term is nonpositive, and composed of contributions from those impact 
parameters pi and p2, and orientations Q, where both <p>i and q?2 are non­
zero. (The orientational dependence (£?) is implicit in pi and [>2).

4. Binary Molecules. Evaluation of the Transport Cross Section

Let the internuclear distance vector in the molecule be d, and its projec­
tion on the impact plane be I). Then (Fig. 2),

and “ - P1 - Pz- <10)

= -fd2Pi(l - eik’“><p‘>)J'</2P2(l - eik'<p,<p,>)-<<5(Pi - p2-b)>fi. (11)

The last factor in the integral has been evaluated previously1; it is easily 
found to be

<<5(P1- P2- b)>fi = 1 ,;(1 - (Pl- Pz)2/«/2)-1'2 (12)
2 nd*

for |pi - P2I < d = |d|, and zero otherwise. In those situations where the 
integral (11) is made up mainly of contributions from impact parameters 
|pi — P2I « d, we obtain from (11) and (12) the asymptotic relationship



8

<71(k) <72 (k)

2 nd2

Nr. 11

da(k) (13)

by means of eq. 8. Therefore, eq. 7 reads*

* Note added in proof: Eq. (14) is formally very similar to an expression derived by 
Glauber18 for the forward scattering amplitude in GeV nucleon-deuteron scattering. The un­
derlying physical effect in that case is a mutual shadowing of two independent scatterers. 
This shadowing effect has the same origin as the correlation effects considered in the pre­
sent work as well as in previous work on energy loss1, i.e., the geometric structure of the 
target particle, but it is otherwise different because of the rather different scattering me­
chanism. In particular, Glauber’s treatment of diffraction scattering yields an interference 
term corresponding to (13) that is a factor of two smaller. I am grateful to N. Andersen for 
drawing my attention to a note referring to Glauber’s work.

z . <T1(Å’)<T2(A-)
o-(Å’) = o-i(Å’) + <72(A-)------------- ----- . . . for “large d" (14)

2 Tzd2

In the opposite limit of a large interaction range (» d), Taylor expansion 
of the delta function in (11) yields

d2
<ö(pi- p2- b)>p = <5(pi- p2) + — Vp/(Pi- P2) • • .

and, by direct evaluation of eq. (7'),

ff(k) = Jd2p(l - ^.(9. + ^))  dt Jd2peik-^v5^k-(Px . . . for “small d” (15)

where <p$ now stands for <p$(p).

5. Power Scattering

The integrals that appeared in the previous section offer themselves for 
convenient evaluation in the particular case of power scattering 

with a positive parameter s. It is known3-5) that within the small-angle ap­
proximation, (16) represents the scattering law for a repulsive interaction 
potential <x R-» where R is the distance from the scattering center. The 
quantity Ct contains atomic parameters and is inversely proportional to the 
energy. Thus, at any given impact parameter p, the small-angle assumption 
can always be fulfilled by choice of a sufficiently high ion energy.
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It is known that by proper choice of the power s, an accurate representa­
tion can he found for repulsive atomic interaction potentials3, cross sections 
for screened-Coulomb scattering4, and multiple-scattering profiles8. For the 
present purpose, the assumption of one exponent s applying to both atoms 
(z = 1, 2) is an important mathematical simplification. Except in case of 
very different masses of the constituent atoms, this assumption is not a 
severe physical limitation.

6. Single Scattering. Differential and Incomplete Total Cross Section

After inserting (14) into (4), and observing (17) we obtain the following 
expression for the single-collision cross section of a diatomic molecule in
the power approximation, in the limit of short-range interaction,

Inserting (16) into (8), we obtain6 7

<7z(Å) = Aik2m (17)
with

F( 1 — mi)
(17a)

and

A/ - 71 m7(1+ m)

Moreover, (15) reads
in = 1/s (17b)

with
U(Å’) = Ak2m + Bd2 + . . . (18)

and
A = (Ai®/2 + A2®/2)2?re (18a)

71

.a
C1C2

(s m) + rn\z (18b)

where

and

(19’)

(20)

(21)

R(m) has been plotted in fig. 3.
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In the (more familiar) notation
der

do = K(cp)d2<p = — dqp, 
d(p

(19’) reads
do doi do2 H(1U) <P
dtp d(f> d(p m 2nd2 dtp dcp

(22)

(19)

the subsequent term in the series would be proportional to d-4. In the oppo­
site limit of long-range interaction, eq. (18) yields
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= [(Æi(99))s/2+ (K2((p))s/2]2m+ ■ ■ ■ ,

(23)

and the subsequent term in the series would behave like d2-ô(<p); it has to 
be dropped, according to eq. (4).

In small-angle single-scattering experiments, it is most often the in­
complete total cross section

(24)

which is the measured quantity. Here, cpc is a (very small) limiting angle 
defined by the geometry of the apparatus. From eqs. (19) and (23) we obtain 
by integration

z>z x ^l, tot 0% tot ..
<7tot = tfl, tot + <72, tot - n(/n)---- ——------ ... (2o)

Zjicr

for large d (short-range limit), and

fftot = [(<71, tot)s/2 + (<72, tot)s/2]2m + . . . (26)

for small d (long-range limit). Alternatively, (25) is a high-energy, and (26) 
a low-energy expansion.

Take, as an example, the case of a homonuclear binary molecule. Then, 
eqs. (19'), (19), and (25) represent the limit of a molecule consisting of two 
independent, identical scattering centers, and the apparent cross section is 
twice the cross section of a single atom (for d -> °o). Conversely, eqs. (23) 
and (26) represent the case of a molecule acting as one target particle, the 
apparent cross section (averaged over all orientations) being 22m times the 
cross section of a single atom. This value is smaller (larger) than the former 
one provided that m is smaller (larger) than 1/2. The behaviour of the 
numerical factor 7?(m) in (19'), (19), and (25) is consistent herewith: 
7?(m) < 0 for m > 1/2. Therefore, so long as the inter-atomic potential itself 
is reasonably close to a power potential, we can expect that the two limiting 
expansions, with some possible interpolation, describe the small-angle single­
scattering cross section of a molecule satisfactorily. As will be shown in the 
following section, the short range limit (19) is appropriate in existing dif­
ferential measurements, while it is not normally reached in measurements 
of the incomplete total cross section.
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7. Application: Thomas-Fermi Scattering for Homonuclear Diatomic 
Target Molecule

Lindhard et al.4 have given a very compact description of the elastic 
scattering between heavy atomic particles on the basis of a Thomas-Fermi 
(TF) interatomic potential. Their description hinges on the power-like be­
haviour of the TF potential over 
energies. In their description4,

da =

where a is the screening radius of the interaction, and*

* The notation I1/2 is frequently found in the literature for

/; = £ sin 0/2 (28)

with 0 the center-of-mass scattering angle, and £ the center-of-mass energy 
in units ol Z1Z2 e2/a, Zi and Z2 being atomic numbers of ion and target atom. 
/(t?) is some (given) universal function that can be approximated as

/■(?y) = Jb?1-2™ (29)

over limited regions of t], with Â a dimensionless constant depending on m, 
and m ranging from slightly greater than 0 to 1. m = 1 refers to Rutherford 
scattering.

In the small angle approximation, (28') can be written in the form 

a moderately wide range of interaction

7m2 /'(//) (27)

E
ZiZ2e2/a (28')

where E is the laboratory energy, and the last part defines the scaled lab­
oratory scattering angle çp. (21) reads, then

da 7ta2
= for 9? « 1. (27')

d<p (p~

The TF description is valid mostly at comparatively small interaction dis­
tances (T gq = 0.529Å). Therefore, the TF cross section for a diatomic 
homonuclear molecule is to be found primarily from eq. (19) which reads, 
by means of (27')
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K(m) q> / doi\2 
ni 2nd2 \ dq )

2na2 i a2fW>

i) At scattering angles corresponding to q> = r] > 1, a molecule be­
haves with high accuracy (better than 1 pct.) like two independent
atoms.

ii) In the region 10-2 ~ q> ~ 1 the cross section of a molecule becomes
measurably smaller than that of two independent atoms.

iii) In the region ~ 10-2 the cross section approaches the long-range
limit.

( 4/n cF q>

(29f)

In the limit of large E, i.e. large q>, the expression in brackets is small, and 
the molecule acts like two independent atoms. The case of strict Rutherford 
scattering (/n =1) has to be excluded, however, since the expansion (19) is 
not applicable in that case (R(m = 1) = - co). Pronounced deviations from 
the independent-atom picture occur at small values of <p, i.e. at low energies 
and/or small angles. In that case, ~ 0.1) the TF interaction is described 
well by (29) with9

m = 1/3; A = 1.309, (30)

and the factor in the brackets of (29) reads, then,

ai) 2
1 - 0.761(TF) (31)

since 77(1/3) = 0.775. For medium-mass collision partners we have3’4 * * * 
a ~ 0.885 Oo(-^i2^3+■Z’22/3)_1/2 ~ 10—4Å, i.e. a2/d2 ~ IO-2. Hence, measur­
able deviations from 1 occur for q> ~ 0.1, and the expansion breaks down 
above q> ~ 10-3. In fact, the low-energy limit (23) yields

da/dq) -> 22/3 dcfi/d(p; (32)

this value is reached, according to (31), at

a3

i.e. around q> ~ 10-2. Thus, the following qualitative picture arises for the 
small-angle scattering on molecular targets.
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Now, conventional small-angle scattering experiments that have been per­
formed on molecular gas targets5- 10(in the trtot-geometry ) dealt with impact 
parameters in the Born-Mayer region, where < IO-3, and thus refer to the 
long-range limit, 'flic analysis of those experiments has been based on a 
molecular picture. The present analysis confirms this picture but adds little 
new to it. In fact, it is oversimplified in this respect since valence electrons 
are important there, but are not taken into account explicitly.

Conversely, differential cross section measurements tend to deal with 
large enough angles and/or energies so that <p > 1, and the short-range limit 
should apply. A notable exception is Cottager’s setup11 where differential 
cross sections have been determined in the genuine TF region (10 3 
~ (p < 10), i.e. including the transition region between the long- and short- 
range limit. So far, mainly experiments with noble-gas targets have been 
performed, but pronounced molecular effects would be expected. Since, in 
that work, the atomic interaction appeared to be closer to a Lenz-Jensen 
(L.J) potential as characterized by (29) with12

m = 0.191; 2=2.92 (33)

al small values of r/, we also quote the expression corresponding to (31) for 
LJ interaction,

the long-range limit do I dp -> 20-382 doi/dcp is reached around (p = 500 (tz/d)5 
~ 1/2-IO-2, i.e. at a similar value as in the TF case*.

* Since the Lenz-Jensen interaction potential, contrary to the TF potential, does not ap­
proach power form at large inter-atomic distances, eqs. (29) and (33) approximate the LJ 
scattering law less accurately than eqs. (29) and (30) approximate the TF scattering law. In 
an accurate analysis of molecular scattering measurements, it may thus he necessary to expli­
citly include a dependence m = m(fp) in R = R(m).

8. Multiple Scattering. Angular and Lateral Distributions

In typical multiple-scattering experiments, either an angular distribution 
F(x,a)d/2 of an initially collimated beam, or a lateral distribution G(.r,o)d2p 
is observed (fig. 4), where .r is the travelled distance in the target. In the 
small-angle approximation, the angular distribution is given by Bothe’s 
formula7

00
F(.r,a) = — f dÂ-Â-J0(Me-™(fc), (35)

2%J0
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Target

a) Angular Distribution

Fig. 4. Geometry of typical multiple-scattering experiments with gas targets.

where N' is the density of scattering centers and a(k) the transport cross 
section (3). Similarly8,

xdx J0(^)exp (/æ'cr(xx') (39)

The two distributions are formally very similar and contain equivalent in­
formation. In addition, somewhat surprisingly, the two distributions scale 
very accurately even rather far out into the tails, as has been shown both 
theoretically8 and experimentally13. It was found recently8 that the power 
approximation for the transport cross section, as exemplified by eq. (17), 
serves as a very accurate basis for multiple-scattering theory in the screened- 
Coulomb region; it seems, in fact, more accurate than the actual underlying 
power potential and single-scattering cross section. 'The following consid­
erations, therefore, have been based on the power approximation (17).

Let us apply eqs. (35) and (36) to atomic systems first. From (17) and 
_ i ‘ i

(35), we find that k scales like (ïV'.r) 2m/Ci and a like Æ-1, i.e. (N'x)2m Ci. 
In particular, the half-width ai/2 of F(.r,a) must behave like

i
ai/2 K (N'x')2m/E, (37)

since Ct x 1/E.
Similarly, from (17) and (36),

(?l/2 (N'æ)2m (38)
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These variations have been checked experimentally in considerable detail. 
With regard to the present analysis, experiments with gases have been most 
convincing13-15.

Let us, now, consider a diatomic gas, and let us assume, as in sect. 5, 
that one and the same power m governs collisions with both types of con­
stituent atoms.

In the following, our reference standard is the completely dissociated gas 
of N' = iV/2 atoms of type 1 and 2; N is the density of atoms. In that state, 
the exponent in the exponential function in (35) reads

- — .x-(*7i  + 02) = - — x(Ai + A2)k2m (39)

Ai and A2 being defined in (17a).
In the long-range limit, (18a) yields instead,

JV 1 1
- -æ(Ai2rø + A22«i)2wÄ’2m;

The latter expression takes on the form (39) if an apparent target thickness

(Ci + C2)2™
(40a)

is introduced. Eq. (37) provides then the following relationship for the 
angular half-widths,

(<*1 /2)mol

(ai/2)d issoc
(41)

in the long-range limit. In particular, for homonuclear atoms, Ci = C2, (41) 
yields 21-1/2”1.

The same argument applied to (36) yields another apparent thickness

(Ci + C2)2w
p2m i f-2m

■ g2
(40b)

This, together with (38), provides a relationship between the lateral half­
widths

({?l/2)mol

({?1 /2)dissoc
(42)
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i.e. exactly the same ratio as (41) in the short-range limit. In particular, this 

ratio becomes 2 2m for a homonuclear molecule. The angular and lateral 
half-widths (a1/2)dissoc and (ei/2)dissoc are comparable to atomic quantities 
that are known experimentally for a wide selection of ions and targets. The 
present argument makes use only of the scaling properties of the power cross 
section, i.e. of the experimental fact that the relations (37) and (38) are 
satisfied. The parameter zn occurring in (41 ) and (42), in particular in the 
homonuclear case, is thus to be understood as the one extracted from 
measurements on the corresponding atomic systems.

The transition between the short- and long-range limit is harder to find. 
The argument has been outlined briefly in ref. 2. We note first that straight 
insertion of (14) into (35) or (36) with o"i(A') according to (17), would yield 
a spurious divergence at k = <», since the correction term ôa(k) would be 
applied outside the region where it is small. Instead, a perturbation approach 
is taken.

Let us, first, insert (14) and (17) into (35). The exponent of the expo­
nential function can be written in the form

- N'x(A1 + A2)k2m
A1A2

1-------------- • k2m 2nd2
Ai + A2

— N'x(Ai + A2)k2m
A1A2

Ai + A2
• k20m/2nd2

(43)

where ko is some representative value of k that will be specified below. This 
approximation is appropriate so long as the term in the brackets does not 
differ substantially from 1. It is also vital that k2m varies slowly. (In the sub­
sequent example, m 0.2). Eq. (43) reduces the molecular correction to 
the independent-atom limit to an apparent target thickness .rf,

AMz Ag"' \ 
Ai + A 2 2nd2)’

and thus, by means of (37)

(æl /2)mol

(æl /2)dissoc (f" 1 AiA2 A-g”
2m Ai + A2 2nd2

(44)

Similarly, the exponent in (36) reads
Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 11. 2
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+1 I
A’'(Ai + A2)x2wi---------- 1

2m + 1 I
2m + 1 AiA2 x2mx2m\

4m + 1 Ai + À2 2nd2 J
(45)

with x0 same representative value of x. Again, the molecular correction can 
be described by an apparent thickness xi" with

(æi")2m +1 æ2rø +1 2m + 1 AiA2 x2mæ2m'
4m + 1 Ai + A2 2nd2

from which the lateral half-width can be found by means of (38)

01/2)mol _ /M1+å J _2 2m+ 1 iA 
(ei/2)dissoc \x ) 2m 4m + 1 Ai + A2 2nd2

The values of ko and xo need to be determined from the unperturbed 
integrals, i.e. the multiple-scattering distributions for the dissociated gas. 
According to (43), /y™ must scale like [A7'.x(Ai + A2)]-i; correspondingly 
(45) requires x2m to scale like (2m + l)/[N'(Ai + A2)x2m + 1]. Therefore, (44) 
and (46) read

(<*1  /2)mol

(ai/2)d issoc
1

1 1 AiA2
- const

2m 2nd2N'x (Ai + A2)2 (44')

({?l/2)mol , 1 (2m + l)2 1 A1A2
------ -------- 1 - const----------------------------------------
((?i/2)dissoc 2m 4m + 1 2nd2N' x (Ai + A2)2

(46')

The values of the dimensionless constants in (44') and (46') depend on 
the precise definition of kQ and x0. Since the integrands in (35) and (36) 
are normally far from narrow, symmetric distributions, a choice based on 
extrema or zeros appears inappropriate. Instead, the median values have 
been chosen; moreover, for simplicity, we take median values at a = 0, and 
Q = 0, respectively. The latter choice is justified because of the qualitative 
similarity of the contributions to the profile at any angle (or lateral spread) 
within the half-width.

It is easily shown (and specified in appendix A) that this choice yields

const = const' = ,q(m)

where g is the solution of the equation

(47)

(47 a)
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Ta bl,e I. The quantity g as defined by eq. (47a), versus in.

III 9 ni g m 9

1.000 0.694 0.250 3.671 0.143 6.671
0.667 1.184 0.222 4.170 0.133 7.171
0.500 1.678 0.200 4.672 0.125 7.669
0.400 2.175 0.182 5.170 0.118 8.171
0.333 2.675 0.167 5.673 0.111 8.669
0.286 3.174 0.154 6.170 0.105 9.167

The function g(ni) has been tabulated in table I.
The present discussion referred to the half-width of multiple scattering 

distributions rather than the full profile. The perturbation approach used 
precluded the consideration of a possible influence on the shape of the 
distributions by the molecular structure. A qualitative argument suggests 
that there is indeed such an influence. Take, as an example, the angular 
distribution F(rr,a), and consider first the range of angles up to the half­
width ai/2. The integral (35) receives, then, essential contributions from a 
certain range of ^-values around the median value ko- Now, with a in­
creasing, flic important range of k shifts towards smaller values because of 
the Bessel function, J0(ka)-, consequently, the molecular correction becomes 
less important (cf. eq. (43)). Thus, at sufficiently large values of a the mul­
tiple-scattering profile for a molecular gas will approach the independent­
atom solution, even though the half-width may be close to or within the 
long-range limit. This result is consistent with what has been found in the 
single-collision case, e.g., eq. (29'). A more quantitative consideration is 
sketched in appendix B.

9. Application: Multiple Scattering on Diatomic Homonuclear
Molecules

Just as in sect. 7, the description can be simplified substantially in case 
of homonuclear molecules by the introduction of TF variables. These are 
well established in multiple-scattering theory (cf., e.g., refs. 7 and 8). We

C T = ?ia2Nx (48a)

S, =
Ea

- a.
2ZiZae2

(48b)

Q =
Ea

2Z1Z2e2 '
(48c)

2*
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where a is the Thomas-Fermi radius and N = 2N' the number of atoms
per unit volume. The latter choice has been made because it fits best to the 
dissociated gas as a reference standard. Inserting these definitions into (44') 
and (46'), and regarding that Ai = A2 for homonuclear molecules, we finally 
obtain

and

( Ct 1 /2)mol

(ài/2)d issoc for

large t

small T

(@l/2)mol

({>l/2)dissoc

1
1 (2m + l)2 / a \2 g

2m 4m + 1 \2d) r
large t

21 2m

for

small T

(49)

(50)

The upper relationships in (49) and (50) refer to the independent-atom 
or short-range limit. The lower values refer Io the long-range limit. It is 
obvious that the relevant variable is the thickness parameter r that also 
controls the half-widths7-8) äi/2 and Q1/2 : At large r (large half-width) the 
short-range limit is appropriate, and the reverse is true at small r.

The upper parts of eqs. (49) and (50) were already mentioned in a short 
note2), where the notation

2m + 1
7îO') = 5----—7.9(«0 (51)4111 + 1

was employed. Moreover, as was shown in ref. 8, the parameter m, which 
determines the interatomic potential, can be related in a definite way to the 
thickness parameter r, eq. (48a), such that a function m = m(r) can be 
defined for a given screened-Coulomb interaction potential. By means of 
these relationships for TF and Lenz-Jensen (LJ) interaction, one can relate 
g and h to r directly (Fig. 5).

Fig. 6 shows experimental results of lateral half-widths measured with 
lead ions scattered on nitrogen and neon at the same density of atoms2). 
The TF screening radii are determined essentially by the heavy lead ions, 
so that from the point of view of comparison, neon ions should be an ac­
curate substitute for nitrogen. The two full-drawn theoretical curves refer to 
eq. (50), with m = 0.2 = const. This value is very close to the LJ value
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_____________ B 11 i I i i I i i____ I__ i__ i__ LuJ__

10~2 IO-1 1 2 5 101 1O21O3 t(TF)
Ml,. I i________ i_________I______ i______ i____ I___ i____ i I i 11—

IO“2 1O~1 1 2 5 1O1 1O21O3t(LJ)
Fig. 5. The quantities g and h defined by eqs. (47a) and (51), respectively, versus power m.

Scales of r (48a) have been included by means of the relations derived in ref. 8.

0.191; it was chosen as the one extracted from measurements of the lateral 
half-width £1/2 on noble-gas targets14) in the critical r range 10-2- 10-1. The 
TF curve has been included for comparison. Both the general trend, the 
region of the drop-off, and in particular the long-range limit are described 
quite well by the theoretical curve for in = 0.2. At the low r values it is 
clearly superior to the TF-curve. Neither of them, however, explains the 
peculiar behaviour of the experimental points that is observed between r = 1 
and 5.

10. Polyatomic Molecules
By application of the same physical model to a polyatomic molecule consisting 

of z atoms 1, 2, ... z, eqs. (7Z) and (7) can be readily generalized,
z

<k- Z <P$(Pd
cr(k) = < Jc/2p( 1 — e ) (52')

and
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Fig. 6. Experimental ratio of lateral half-widths, q1/2 (nitrogen)(neon), versus thickness 
parameter t (48a) from ref. 2. Fulldrawn curves: Eq. (50) for power m — 0.2 (Lenz-Jensen) at 

all t. Dashed curve: Eq. (50) for Thomas-Fermi interaction.

cr(k) = “ 2 ^/(k) + 2 ^/(k) • • •
i i <j i<j<k

. . . + (-)z + 1<5<Ti2...2(k)
(52)

with oj(k) defined by eq. (8) for z = 1, 2, ... z, and

<5^...(k) = <fd2p(l - eik-^(Pi))(i  eik-W). . . >; (53a)

Pi is the (vectorial) impact parameter with atom i. The long-range limit is readily 
found from eq. (52'). Indeed, the leading term for small interatomic distances reads

<r(k) ~ p72p(l - e«k-<WP))

or, for power scattering, by means of (16) and (17),

of which (18a) is a special case. In the short-range limit, eq. (52) yields

CT(k) ~ 2<Ji(k) - 2
i i<j

&i(Jc) Gj(k)
' 2 bcfijjc (Â’) . . .

ï < ; < fc

(53)

(54)

(55)
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where dij is the distance between atoms z and j. The term dcii/k), according to its 
definition (53a), is equivalent with (9) for i = 1, j = 2, and is, therefore, identical 
with (13) for 1 = i, 2 = j. It will now be shown that except for a very small number 
of special cases, the subsequent terms in (55), from 6csijk on, are of higher than 
second order in the inverse interatomic distance, and therefore have to be dropped.

Take the term <5cri23 as given by

ÔO123 = < frf2p(l - - ^‘(^(l _ e^-?s(P3))>ß j
= n {P2pt(l - eik'(pi(p»))}-<<3(P1 - p2 - bi2)ô(pi - p3 - bi3)>£ , I ) 

i = 1
where b^ is the projection of the interatomic distance vector d^ on the impact plane. 
Since only the leading term for large interatomic distances is of interest, we can 
simplify the rotational average

<<5(pi - p2 - bi2)ô(pi - p3 - bi3)>.Q ~ ^<(bi2)ô(bi3)Xo . (57')

The operation < . . . )q includes an integration over all orientations of an arbitrary 
rotational axis (here taken to be di2) and over the azimuthal angle of an arbitrary 
point within the molecule (here taken to be atom 3) with respect to that axis.

The azimuthal average is evaluated first. The factor d(b12) is not affected by 
this operation, but it ensures (by bp2 = 0) that the rotational axis is identical with 
the polar axis of the system. Therefore,

XS/P XX /A/k X d(&13). ^(dissin^g)
<^(bi2)<5(bi3)>ß = <ô(bi2)-- -> = —-—;--------- <<5(bi2)>.

7tbi3 Jidi3s,in(p23

Here, ç?23 is the angle between d13 and di2, i.e. a fixed angle within the molecule, 
so that ôi3 = di3 sinç>23.

The average over the rotational axis reduces then to

< <5(bi2)> =
1

27t<Zi22

a result which is identical with (12) for Pi — p2 = 0. Therefore,

and, from (56)

<<5(b12).<5(bi3)>£ =
<5(sin<p23)

2 %2c?i22c/i32 sin9?23 ’
(57)

Ô(T123 ~
<71(À-)<T2(À)(73(À0

2tï2(/i22(7i32
(5(sinç223)

sin<p23
(58)

Thus, for sin<p23 4= 0, we have <5<ti23 = 0 to order di2-2 di3-2.
For a linear molecule, </?23 = 0, (58) becomes strongly divergent. In a real 

molecule, this divergence will be smeared out by molecular vibrations. Let, for 
example, <p23 be distributed according to a gaussian distribution
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i 2q? 2
<7(9’23)rf2<P23 = - ------e ° 2n(p23d(p23 (59)

2 nyo2

with a width <?o <X 1, then <<3(sin<p23)/sin<p23)>ff = - - 9, and

<<5tfl23>S- ~
O’iO’20’3

(27t)2(/i22C?i32Ç)02
(60)

This expression is negligible in comparison with, e.g., <5<ti2, if

2%di32ç>o2 » <73 (61)

The factor <po2 makes this a rather strong requirement that will often not be fulfilled 
in cases of practical interest.

Therefore, the linear molecule needs to be treated separately, once more, and 
starting from (56). In such a molecule, we have, e.g.,

and hence
(113 = ^di2 with Â + 0, + 1

1)13 = ^12

(62)

(62a)
Thus, the rotational average in (56) can be written

<<5(pi — P2 — bi2)ô(pi - p3 — bi3))p = <5(pi — p3 - /(pi - P2)) •

•<<5(P1 - P2 - M>ß ~ ^(Pl - P3 - ^(Pl - Ps))- n 9 • 
2%CZ122

(63)

If this is inserted into (56), it becomes obvious that <5<ti23 cx di2~2, i.e. of the same 
order as the ôotj and therefore not negligible in general, for a linear molecule. 
The resulting expression

<30123 ~ 1 f^2Pi(l - fd2p2(l - eik-^(Ph).

2tï(/i22 J J (64)
. (1 _ e^k • <P3(P1 • (l-Â) + pa ■ 2)\

is a 2-center integral that can be evaluated by means of an expansion in Bessel func­
tions, if needed. At present, we consider two limiting cases by means of a simple 
estimate.

We first note that the integrand in the expression

<7i(Å') = p/2p(l - eik •?*(»>)

can be represented as a step function,

1 _ e»k-<?i(P)
0 

P Z poi(k) 

p > poi(k)
(65)
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since for small p, (pi is large, and the exponential rapidly oscillating. By comparison 
with (17) and (17a) we find

pot(JC) = (65a)

with a well defined constant ym.
The following considerations refer, more or less explicitly, to a triatomic mole­

cule. Take first the case where po3(k) is greater than PoiGO and po2(&), C3 > Ci, C2. 
Then, the integration region in (64) is determined essentially by poi and po2> and 
the last factor is 1 in that region. Then,

1
<5o"i23 ~ „ 0102 ~ Ö012; Ci, C2 < C3. (66a)

2tIC/122

In the opposite case, where P03 is substantially smaller than poi and p02, a similar 
consideration yields

„ 0'102 „ „ „ , .
ÖO123 « - ; Ci, C2 » C3. (66b)

27TO122

Now, Ci increases with increasing atomic number of the target atom. Therefore, 
the two limiting cases refer to molecules where one heavy atom (3) is surrounded by 
two light ones, and one light atom (3) surrounded by two heavy ones, respectively. 
For a triatomic molecule (55) yields

and

o ~ 01 + 02 + 03 —
0103

2%di32

0203

2ttG?232
(atom 3 heavy)

a ~ Ol + 02 + 03 —
0102

2%C?122

O1O3

2%G?132

O2O3

2tTC?232
(atom 3 light)

(67 a)

(67b)

The latter result does not differ from what would be expected for a nonlinear tri­
atomic molecule. And the former result (67a) could just as well have been derived 

0'10'2
by means of the fact that the term <$012 ~ „ would be smaller than Ô013 and

27ïdi22
ö(i23, both because <n, 02 « 03 and (Z12 > di3, d23- It thus appears that the only 
case where some uncertainty prevails is that of a linear molecule with 3 roughly 
equal constituents. In that case, we have

(Tiers <72^3 01^2
27tdi32 2%(/232 2tï(7122

(68)

if 1 and 2 are the outer atoms. Thus, the uncertainty due to lack of knowledge of 
the accurate value of the sum — <5oi2 + ($0123 is ~ 12 pct. of doi3 + 0^23, i.e. a 
12 pct. error in a correction. This must most often be an acceptable uncertainty.

It, occurs therefore, that at least for triatomic molecules, the expression
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ct(å') ~ 2 °i(^ - 2
2 = 1 i<j

at(k)aj(k)
27ld^

(69)

gives a satisfactory estimate of the transport cross section in the short-range limit, 
independent of the detailed geometry of the molecule.

In atoms containing more than three molecules, similar considerations would 
have to be applied to terms of the type <5<ti234 etc. The type of argument would he 
the same as what was applied in this section, and the results would be similar. 
A case where caution would have to be applied is that of long chain molecules 
(“strings”). Other types of processes16) that are outside the scope of this paper 
would have to be considered there.

11. Polyatomic Molecules: Single Scattering
Single-scattering cross sections for polyatomic molecules are established readily 

be means of eqs. (54) and (69) from eq. (4). The results are straight generalizations 
of those quoted in sect. 6 for diatomic molecules. They read

da

for small interaction distance, and

2mda 
dtp

daj
dtp

(ni) tp dat 
m i<} 2nd^ dtp

(70a)

(70b)

in the long-range limit. 7?(m) is defied by eq. (21) and plotted in fig. 3. Both equations 
show that the relative magnitude of molecular corrections in comparison with the 
independent-atom limit (djj = co) increases with increasing number of atoms per 
molecule. The conclusions made in sect. 6 remain otherwise unchanged.

If the molecule is built up of z atoms with similar atomic numbers and masses, 
we can ignore the differences between the constituents, and write eqs. (70) in the 
form

da dai /?(m) (dai\2 v 1 /

dtp m

da
dtp

Thus, the two limiting cases differ by
applies mainly to collisions where m 2 0.2 (LJ), this ratio decreases substantially 
with increasing z. When the sum in (70a') is written in the form

dtp

(70b')

a factor of z2m-l • since the lons-ranse li

i<j 2zidij2

o-2 m 
dtp
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(71)

it becomes evident that the molecular correction to the independent-atom limit 
increases like z-1 on a relative scale for small molecules (z < 5), but more slowly 
for larger ones.

These relations can easily be written in terms of TF variables (28). However, 
TF variables provide a substantial simplification only for homonuclear (or approx­
imately homonuclear) molecules.

12. Polyatomic Molecules: Multiple Scattering
The generalization to polyatomic molecules of the relations derived 

for multiple scattering starts also with eqs. (54) and (69), and eqs. (35) 
Instead of (41) and (42), we obtain

(ai/2)mol ((?l/2)mol

(æl/2)dissoc (@l/2)dissoc (V Ci2wi)1',2wl

in sect. 8 
and (36).

(72)

in the long-range limit. This approaches 
For nearly independent atoms, we 

(44') and (46'),
(<Zi/2)mol J (7 

(otl /2)dissoc 2m

-1-1/2m for homonuclear molecules, 
obtain the following relations instead of

1 A iAj
//'■'A

i

(73a)

(ei/2)moi x  9_ (2m JM)2 1_ AjAj
(ei/2)dissoc - 2m 4m + 1 (2^02i<J 2%(/jj2iV'.r

(73b)

where A{ and g are given by (17a) and table 1, respectively.
In case of (approximately) homonuclear target molecules, (73a) reads

(ai,2)m°i ~ 1 - 1 y _L_ _ , A. ’ ' / 1------ > (73a')
(ai/2)dissoc 2mz2i<; 27tdij2N'x 2m 2 2zcdij2Nx

where N = zN' is the number of atoms per unit volume. Obviously, the molecular 
correction to the independent-atom limit increases with increasing z in much the 
same way as was found in case of the single-scattering cross section. The corre­
sponding relations for qi/2, and the equations for TF-scaled quantities (in the 
homonuclear case) are easily found.
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13. Summary

1. In the classical small-angle scattering of charged particles by molecules 
it is convenient to define three regions; a long-range limit, where the 
interaction takes place at a sufficiently large distance so that the mole­
cule acts as one target particle; a short-range limit where the interaction 
takes place at sufficiently small distances so that each constituent atom 
(if close enough to the orbit) acts as one target particle; and a transition 
region.

2. In single scattering, the long-range limit is reached at low energies and/or 
small scattering angles. The reverse is true for the short-range limit. The 
transition region covers the range 10“2 ~ ?;( = t1/2) iz 1 in Thomas Fermi 
variables. This corresponds to moderate screening of the Coulomb inter­
action. Typical measurements of incomplete total cross sections trace the 
region of excessive screening (// « 10~2); the long-range limit applies to 
those situations.

3. In multiple scattering, the long-range limit applies to small values of the 
thickness parameter r = ta2Nx, and large ones for the short-range limit. 
The transition region covers the range 10-2 ~ r ~ 1.

4. The short-range limit can be realized experimentally by means of a dis­

5. The calculations presented here are based on the simplifying assumption 
of a target molecule composed of undisturbed, spherically symmetric 
atoms that are arranged in some geometric configuration; i.e., valence 
effects are ignored. Since the transition region between the long- and 
short-range limit lies entirely in the Thomas-Fermi region of the 
scattering diagram where valence effects are unimportant, this simpli­
fying assumption only affects the detailed behaviour within the long-
range limit. The quantitative results presented in this paper refer to the 
deviations from an independent-atom picture, i.e. the short-range limit 
and the transition region; these results are insensitive to valence effects.

sociated gas target, or a noble-gas target with similar atomic number. 
The single-collision cross section of the molecular gas (differential or 
total) is smaller by up to a factor of the order of ~ z2™-1 & z~0-6 than 
the corresponding quantity for the dissociated gas, where z is the number 
of atoms in the molecule. Multiple-scattering half-widths (angular or 
lateral) are smaller by up to a factor of ~ -1-1/2™ z~3/2,
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6. For essentially the same reason, the exclusive use of a classical-orbit 
picture of the scattering process is not a severe limitation.

7. Experimental data on single scattering off molecules in the transition 
region do not appear to be available. One recently published set of 
multiple-scattering half-widths on nitrogen is in excellent agreement with 
the theoretical prediction, both in the long-range limit and the transition 
region, provided that the scattering law for individual atoms is chosen 
in accordance with the experimentally found multiple-scattering half­
widths on noble gases. This scattering law corresponds much closer to 
Lenz-Jensen than to Thomas-Fermi screening. The multiple-scattering 
half-width in the transition region is quite sensitive to the scattering law 
for individual atoms. Therefore, the molecular effect described in this 
paper serves as an additional probe for interatomic potentials in the 
moderately-screened Coulomb region.

8. With respect to practical applications in accelerator physics, it may be 
useful to recall that regardless of the nature of the target molecule, target 
pressure, and ion type and energy, the multiple-scattering distribution 
is narrower for the molecular than for the dissociated gas, so long as the 
small-angle approximation applies.
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Appendix A

This appendix serves to specify the median values ko and xo as repre­
sentative values of k and x in Bothe’s formula (35) and its modification (36) 
for lateral profiles. Consider (35) first and define ko by the relation 

dkkJo(k^e-N'xa^,
oo

(Al)
1

2% o
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i.e., ko divides up the integration into two equal parts. For values of <x 
within the half-width ai/2, one may set a = 0 without making a serious 
error. Then, ko becomes independent of a, and (Al) has a unique solution.

(Al) is rewritten by means of (18).

dkke~N xAk2m = y- f

I

00
dkke~ N'xAk2m (A2)

or, after introduction of the variable

where

0

(A3)

(A4)

(AS)

In terms of an incomplete gamma function17), (A4) reads

(A6)

This determines g = g(m). Table I shows 7 as evaluated from the tables in 
ref. 17. Insertion of (AS) into (44) with A = Ai + A2 yields (44') and (47).

By applying the same argument to the lateral distribution (36), the 
equation that corresponds to (A2) reads

Xo r2m + l „ ~ao r2m + l-N' ____ .Ax2m , I - N’___ Âx2mdune 2m + \ = 4. I dxxe 2m+1 . (A7)
0 0

The proper variable is now
^2m+l

t = N' - — Ax2m (A8)
2m + 1

and
^•2 722 + 1

7 = N'--------- axo2m (A9)
2/77 + 1

with g being a solution of (A6). (A9) inserted into (46) yields (46') and (47).
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Appendix B
It is the purpose of this appendix to provide a somewhat more quantative 

argument for the claim that a molecular multiple-scattering profile approaches the 
independent-atom proflie at larger scattering angles. Only the angular profile F(x,a) 
will be considered. The procedure is a generalization of the perturbation approach 
taken in sect. 8.

Take eq. (35) and insert (14),

F(.t, a) kdkJo(kix')
—N'x^Ot (&) 

e
+ a2 (*)- <7i (fc) g2 (fc)\

271 (I2 ) (Bl)

for x sufficiently large so that the molecular correction is small. Within the perturba­
tion approach, we can write

F(x,oc) ~ e 27ld2 • Å-t7Åv/0(Æa)e-JV'iC<ori<* )+ff2(fc)),

where

(B2)

Å’i = 7ci (a) (B3)
is the median value of the integral (B2). Therefore, (B2) can be written in the form

F(x, a) S(a) • Faj(.r, a) (B4)

where Fa;(x,a) is the independent-atom distribution, and

S(a) = e 2nd* (B5)

This function is greater than 1 for a = 0, and decreases towards 1 with increasing a, 
since 7c1(a) decreases. An approximate expression for Aq(a) is found by series ex­
pansion,

./o(Å’a) 1 - /^a2/4 ; (B6)

Åq(a) «« ko - i-qoc2 (B7)
where A’o is defined by eq. (A2). The requirement of /<i(a) being a median value 
yields, then, to first order in a2, the following expression for r0,

ro
eN'x[ø,. (k0)+a2 (fc„)]

87co
dkk3e~N x^Oi (fc> + cr2 W)

dkk3<fc>>

In the notation of appendix A, this can be written

(B8)

r0 = T(2/m)(l - 2P(2/m,ø)) • V • (N'.rA)~2/™. (B9)
16m
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From this, and (B7), we obtain

S(a) ~ 1

where

(/2A1Â2

2%<72N'.t(3i + Æ)2
a

2[7iV'.t(Ai + As)]1/2”1
(BIO)

B(m) = r(2/in) (1 — 2P(2/m,gy)e9 (Bll)

(BIO) shows that the zero-angle scattering intensity is greater than its independent­
atom value by an amount that corresponds to the decrease in half-width (44') due 
to the molecular correction. With increasing angle, this enhancement approaches 
zero.
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Introduction

The idea that the electron is a spinning top was introduced by Uiilen- 
beck and Goudsmit (1925) fifty years ago and has been touched upon at 
numerous occasions ever since. Dirac (1928) found “a great deal of truth in 
the spinning electron model, at least as a first approximation”, but he did 
not make any attempts to interpret the “other dynamical variables” required 
“besides the co-ordinates and momenta of the electron”. Instead, he created 
a purely mathematical model of the electron, in which these variables are 
represented by 4x4 matrices. The resulting equation leads to complete 
agreement with experiment and is, therefore, the equation of motion for the 
electron.

Several authors have felt the need of some type of interpretation of the 
internal variables in Dirac’s theory, and have explored the quantum theory 
of rotating systems with this in mind. Thus, Bopp and Haag (1950) drew 
attention to the fact, that the differential operators describing the angular 
momentum of a two particle system admit eigenfunctions with half-integral 
quantum numbers. Yet, they found that no associated Schrôdinger equation 
could make use of these through its regular solutions.

These findings, together with the generally accepted view that it is 
impossible to formulate a satisfactory relativistic description of a 3-dimens­
ional rotor, have led to the consideration of more complex models with added 
degrees of freedom. At the same time, the scope has been widened by 
extending the group of particle characteristics to be described to include e.g. 
isospin and hypercharge. Ai.lcock (1961), in his investigations, considers a 
particle model based on two 3-dimensional rotors rotating with respect to 
each other. Other authors (van Winter, 1957; Hillion et Vigiér, 1958; 
Bohm, Hillion and Vigiér, 1960) consider instead a 4-dimensional space­
time rotor. A comprehensive list of the many diverse classical and quantum 
mechanical papers in the field is presented in the monograph by Corben 
(1968).

A study of the various sophisticated models does admittedly leave one 
with the impression, that the whole field has acquired a somewhat meta­
physical character. It is at least fair to say that no simple alternative to 
Dirac’s purely mathematical model af the electron has emerged.

1*
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The alternative does exist, however, as we show in the present paper. 
It is in fact nothing but the elementary 3-dimensional rotor governed by 
relativistic quantum mechanics. The dynamics of the rotor is in all respects 
identical with the dynamics of a Dirac particle, and hence it gives us new 
and equally exact ways of visualizing the sometimes rather complex be­
haviour of electrons.

To make the following presentation reasonably self-contained we sum­
marize the most relevant properties of a 3-dimensional rotor in section 2. 
Section 3 discusses the relativistic description of a spinless particle; the 
extension to the relativistic rotor as a model of a particle with spin is cons­
idered in section 4, and the possible forms of a local Hamiltonian are derived 
in section 5. In agreement with Dirac’s conclusions, it is found that only 
for s = y can one construct a local relativistic Hamiltonian (the Dirac 
Hamiltonian), and the rotor is in this case an asymmetric top. The Dirac 
equation and its solutions are then discussed in sections 6-12 in the light 
of the preceding sections. The invariance group of the problem is described, 
and detailed expressions are given for all symmetry operations of this group. 
Throughout the paper we operate with an unassigned indicator, reflecting 
the fact that the basic commutator relations may be written in two ways, 
either with an i or a-z.

2. The quantum mechanical rotor

Consider a right handed Cartesian coordinate system So, with axes 
Y, Z and origin 0. Two points

ri = (xi, z/i, zi), r2 = (æ2, IJ2, Z2) (1)

define a second right handed system 5 with origin 0 and axes specified by
the unit vectors 

C3
rif2 sinu

F] X F9 ei x e-2,
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where ii is the angle between ri and r-2- The orientation of S with respect to 
So may be specified by three Euler angles a, ß, y such that (Rose 1957) S is 
obtained from So by

1) a rotation about the Z-axis through the angle a,
2) a rotation about the new Y-axis through the angle ß,
3) a rotation about the new Z-axis through the angle y.

The following relations are then valid:

ri cos a cos ß sin

cosacossin a cos ß sinri

X2 = — **2 cos a cos ß sin sin a cos

f/2 - ?2 cosacossin a cos ß sin

The components si, S2, .S3 of the vector operator

-s = th [ri x Vi + 1*2  x V2]

(4)

(5)

are the generators for rotations of S about the X, Y, Z axes, respectively. 
A finite rotation through an angle e about a unit vector n is effected by the 
operator

Q(n, e) = exp(-ten • s/IY). (6)

The “indicator” t is either i or -i, with i being the ordinary imaginary unit. 
Obviously, Q(n, e) is independent of the value assigned to the indicator.

Substitution of (3) and (4) into (5) gives:
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d 
dß

cos a d 
sin ß dy

d d
cos a -—I- cot ß sin a — 

dß dx
sin a d
sin ß dy

d
*s'3 = “ • dx

The operators
Ci = s • ei, C2 = s • 62, C3 = S • 63

commute with every component of s and have the form:

Ci =

C2 =

They satisfy the “anomalous” commutator relations 

whereas the operators si, S2, S3 satisfy the “normal” relations

[Si,S;] = ihSijkSk.

(7)

(8)

(9)

(10)

(H)

£$;*  is the Levi-Civita symbol, antisymmetric in all three indices (£123 = 1), 
and the convention of summing over repeated indices is understood.

We also note, that

Id/. d \ 1 / d2 d2
s2 = — h2 —------- (sind—|H----------1— H-------sinßdßy dß) sin2ß\da2 dy2 

where
s2 = siSi = (13)

The expressions (5) — (12) are, of course, well known. They are re­
produced here for the sake of reference and in order to stress, that the s/ 
and Ci operate directly on the “dreibein” defined by 61, e-z and 03, or equiva­
lently, on functions depending on the orientation of the dreibein through x, 
ß and y. Thus, we do not consider r± and Z2 as coordinates of particles, they

2 cos/? d2 
sin2/? dxdy
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are merely mathematical points by means of which the dreibein may be 
defined, ri, T2 and n are, in accordance with this, dummy coordinates which 
drop out of the description as soon as the Euler angles are introduced. It is 
in this way that it becomes possible to separate the fact that a system may 
have an orientation, from more or less arbitrary speculations concerning an 
internal distribution of matter. That such a separation can be made is, of 
course, the basic assumption behind most efforts mentioned in the Introduct­
ion — with the work of Bopp and Haag as an exception.

The vector ri and 72 may play a very different role in other contexts, as in 
the theory of two-electron atoms (Hylleraas, 1929; Breit, 1930) where 
they do represent particle coordinates, ri, /’2 and u are then actual internal 
variables, of the greatest importance for the character of the atomic states. 
The construction of internal coordinate systems similar to ours has conse­
quently been studied by several authors. A review is due to Bhatia and 
Temkin (1964).

Let us now assume that the dreibein discussed above describes the 
orientation of an elementary particle with respect to So. The probability 
amplitude for this orientation is then a wavefunction built over the simultane­
ous eigenfunctions 7)®wra(a, ß, y) of the commuting operators s2, S3 and £3. 
These eigenfunctions have been known since the early days of quantum 
mechanics, and up-to-date presentations of their properties, as well as the 
various phase conventions introduced in the course of time, may be found 
in the books by Bohr and Mottelson (1969) and Judd (1975). They 
satisfy the relations:

mn

s Ds■’S l7mn

F l)s^3 mn

s(s + l)^2^n 

mhDmn 

R^mn

(s = 0,|,l...),

(m = s, s - 1,. . . , - s), 

(n = s, s — 1,. . . , — s).

(14)

For each value of s they deline a linear function space Qs of dimension 
(2s + l)2. Properly normalized they satisfy the orthonormality condition:

<Dmn\ DSm'n'> = sinßdß dyDsmn(oc, ß, y)*D sm,n,(x, ß, y)
Jo Jo Jo

£ £ £
°ss’ °mm' °nn" >

(15)

and the phases may be chosen such that

(sx ± ts2)Dsmn = h[(s T m) (s ± m + l)]1/2^±1>n, 

(CiTtC2)D^n = Lu(s T n)(s ± n + 1)]1/2D^>W±1.
(16)
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for .s =

0! - Z)î> 1
12 9 /. - (S.-r2)-''-cos-eta/2e^/2,

2

02 = /asin-e-'a/2e^/2,2

03 1*1- ■/. ■ - (8.12) ~1/2sin - elxl2e~iyl2
2

=
/A,

Z2» -■/. - (S* 2)’ I/acos-e-fa/2e-T/2
2

It was shown by Euleb, in his pioneer work on the motion of rigid bod­
ies two hundred years ago, that the configuration space for a 3-dimensional 
rotor is the 4-dimensional unit sphere (see, e.g. Whittaker, 1904), each 
orientation of the rotor corresponding to two points on the sphere. The 
functions l)smn maY accordingly be viewed as 4-dimensional spherical 
harmonics (Hund, 1928), and is an irreducible function space under the 
operations of 0(4), the 4-dimensional orthogonal group. The operators St­
and Ci represent the generators of 0(4). Il is for certain purposes convenient 
to replace them by the operators

^i = >S't ~ Ci, I

, (18)
%i — Si + Ci,

which obey the commutator relations:

= ih^ijk^-k,

'^i,X.Å ~ iti^ijkXk, J (19)

[/i ’ Xil = lheijk^k •

Having characterized the functions from which the probability amplitude 
for the orientation of a 3-dimensional rotor may be constructed, we shall 
pass on to a discussion of its dynamics. Our basic assumption will be, that 
it is possible to construct a Hamiltonian of the form

= ^(si,S2,S3; Ci»C2, C3; a), (20)

with a referring to a set of external variables which commute with the internal 
variables st and Ci- It follows, that

[H,s2] = 0, (21)



Nr. 12 9

and hence thai the eigenfunctions of H may be written as
(28 + 1)*

= 2 (22)
i = 1

where (i = 1, 2, . . . , (2s + l)2) are the functions Dsmn(a, ß, y), and fc 
are functions of the external variables.

Each function space Qs will thus give rise to its own set of eigenfunctions. 
Inded, it will turn out that the very form of H will depend on the quantum 
number s, and that only for s = -j. is it possible to construct a local Hamil­
tonian. These results are consequences of the constraints imposed by the 
theory of special relativity, and discussed in the following section.

3. Relativistic description of a spinless particle

The special theory of relativity requires that the laws of physics be 
invariant under the operations of the inhomogeneous Lorentz group. Let 
us, by way of introduction, sketch the implications of this requirement in the 
case of a free particle without spin.

With
= (æi,æ2,æ3, ict) (23)

denoting a general space-time point, we introduce the operators

d

and

''/• ■ ~‘hav
Ua'/Ll

(24)

~ flPv ~ X’vP[i ■ (25)

The following commutator relations are then valid:

(26)
ÏP/i’Pv] = (27)

(28)

L> På ] = ^ (åPv ~ ôvÀP/j.)• (29)

We adopt the convention that greek indices take on the values from 1 to 4, 
italic indices the values from 1 to 3.

The operators L^lv represent the generators of 0(4). They are antisym­
metric in // and v, and hence one introduces new operators which are all 
independent, viz.
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U ~ &ijm Ljm >

kl = I-i^.

The relations (28) are then replaced by

[h Aj] — ihZijmlm,

\Jt,kj] = m f

[ki, kj ] = ihetjm Im , 

which are similar to (19).
Next, we define operators for finite transformations:

F(a) = exp(-<fli/Jï/h),

U(t) = exp(- AT/u/h), 

7?(m,s) = exp(- let 'lilh), 

/l(rc',r/) = exp(-ir/ikilh),

characterized by the six real parameters at, et, and the four imaginary 
parameters r and pt. n and n are real unit vectors such that en = (si, £2, £3) 
and T/n = (^1,^2, ^3). F generates a spatial translation a, U a time displace­
ment Tl(ic), and R a rotation through the angle £ about n. A generates a 
Lorentz transformation in the direction n corresponding to the relative 
velocity V such that

tanz; = iV/c. (33)

The transformations are all independent of the value assigned to the indi­
cator i.

All F and U and products thereof represent the group ST of translations 
in Minkowski space. All R and A and products thereof represent the proper, 
orthochronous, homogeneous Lorentz group The semidirect product of 

and is the proper, orthochronous, inhomogeneous Lorentz group 
££“Q. The representations of these groups, as well as of the extensions 

obtained by adding the operators for space and time inversion, have been 
thoroughly studied. We refer to papers by Wigner (1939), Bargmann and 
Wigner (1948), and to the books by Roman (1960), Lyubarskii (1960), and 
Lomont (1959).

A representation of for a single particle without spin is obtained by 
constructing a linear function space which is invariant under the operators 
(24) and (25). As basic functions we may choose eigenfunctions of the 
commuting operators pi,pz,ps, and p$, i.e. functions of the general form
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I Tri, ^2, ^3, ^o> = exp(rrr ■ r//z)exp(-zc^of/A). (34)

The operator
/lå2 \

zw.-* 2^-?2) (35)
commutes with all operators in (24) and (25) and hence with all operators 
in the set (32). A function space which is irreducible under the operators 
representing AAo will consequently be characterized by a single eigenvalue 
of P^P^ • Since

= (tt2 - ^o)|tt>^o>> (36)

we have the requirement:
2 2 , „2 27t0 = n + mQc , (37)

with niQ being a constant. This constant is identified with the mass of the 
particle. We further identify it with the momentum and c%o with the kinetic 
energy:

Ekin = CJlQ • (38)

mo and %o are, accordingly, assumed to be non-negative; (it, mo) is a time­
like four-vector, and

3To = j/^ + møC2. (39)

It is easy to verify that all functions of the form (34), with the same n?o, 
may be generated from one function in the set by use of the operators R 
and A of (32). A convenient choice for the representative function is

I 0, 0, 0, imocy = exp(-tn?oc2f/h) when mo > 0, (40)

I 0, 0,1, z > exp [t(æ3 — cf)//i] when mo = 0. (41)

We get, for instance:

Zt(0, 0,1,??) I 0, 0, 0, imoc > = exp(z7ca?3//i)exp(-zc|/tt2 + 7nQC2Z//i) |
I (42)

= I 0, 0, %, z%o>, J
with

tan?? = m/j/jr2 + zz?qC2 = icn/Ekin^ (43)

By comparing with (33) we obtain the usual expression for the velocity of 
the particle:

V = C27tlEkin- (44)



12 NT. 12

Similarly we get:

/l(0, 0, 1, r/) | 0, 0, 1, z> = exp [c7r'(.T3 - <7)//i j = | 0, (),%', in' >, (45)
where

% =exp(-h/). (46)

Let us now consider the equation of motion for a free spinless particle. 
The existence of such an equation is, of course, a necessary condition for 
being able to predict the future from the instantaneous situation. An equation 
of motion must have the form

dw

with -ip being the wavefunction and H a time independent operator, the 
d

Hamiltonian of the particle. FI and th— are thus required to be equivalent 

operators, and this implies that the relations (27)—(29) must remain un­
affected by the substitution

/M - H. (48)
c

The relations (27)-(29), with the substitution (48), represent what has been 
called by Dirac “relativistic dynamics in the instant form’’ (Dirac, 1949). 
The problem of constructing a dynamical theory is tantamount to finding an 
II that will satisfy the substituted relations.

The operators ± p2 + in^c2, with mo being an arbitrary constant, will 
satisfy the relations in our case, mo is again fixed as the mass of the particle, 
and a comparison with (34) and (47) shows, that we must choose

H = cj/jo^Tmp. (49)

The solution for the Hamiltonian is thus unique. Its eigenvalues represent 
the kinetic energy according to (38).

4. The relativistic rotor

We shall now extend the treatment of the previous section to the case of a 
quantum mechanical rotor, as a model of a particle for which it is possible 
to talk about an orientation in space. The coordinates define the position 
of the particle by specifying the origin of the coordinate system So, in space 
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and time. The Euler angles a,ß,y specify the orientation of the particle, i.e. 
the orientation of S with respect to So.

A first necessary condition for being able to construct a relativistic 
dynamics for the rotor is the existence of an algebra similar to the one given 
through the relations (27)-(29). The four-momentum (24) is defined as 
before, but the operators L/lv must be supplemented with operators built 
over the internal generators si and Ci, as given by (7) and (9). Thus we 
define :

J/jv ~ Lpv + s/m” (50)
and similar to (30):

Ji — 2 ^ijmJjm >

Ki ~ Ji4,

Si —

Xi = Sj4. J (51)

The operators JIIV and pfl must satisfy the relations (27)—(29) with Jfiv 
substituted for L^v. The operators (51) must satisfy relations similar to (31),
in particular:

Sj , Sj ] — lllEijmSm ,

|_Si,Xj] = lllEijm^m •> (52)
, Xj] = iJiEijmSm ■

We have already, by (18), constructed a set of operators satisfying (52), 
but they cannot be used for the present purpose, because it is essential that 
the Si in (52) be identical with the Si in (7). This is dictated by the form of 
the rotation operator (6).

With the Si fixed by this requirement, it only remains to determine the 
Xi. The second of the relations (52) shows that k must be equal to x times an 
operator b commuting with s:

K = bs, (53)

and because of (13) we may take this b to be a function of the Ci alone. The 
third of the relations (52) shows finally that the condition

52 = 1 (54)
must hold for b.

In looking for an operator that will satisfy (54) one must exclude the 
trivial solutions b = ±1, since s and k must be linearly independent. This 
implies, that it is impossible to find a universal expression for b, but with 
(20) and (22) in mind it becomes meaningful to solve (54) within each 
function space Qs separately (cf. (14)). In this way one obtains the following 
semigeneral solution, independent of the value assigned to it
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for s half-integer,
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b = exp(-%/e • s/7z) 

b = z exp(—• s/h)
(55)

with e being an arbitrary unit vector in the internal coordinate system S.
Since no dynamical preference has been given to any of the axes of S so 

far, we can now’ introduce such a preference by fixing the direction of e. 
A convenient choice at the present stage is

Thus wre obtain:
e = e3.

2 L
b = - -7 43 lor s = 7,

h i

2 9b = 1----- Cl for s = 1,
7i2 3

etc.

(56)

(57)

Having determined the operators of the basic algebra we obtain the 
operators for the finite transformations of ^~^o by multiplying R(n, e) in 
(32) with the operator (6), i.e.

Q(n,e) = exp(- tEiSi/h.). (58)

The operator A(n',Tf) is similarly to be multiplied with

A(m',^) = exp(-ir/iKi/li). (59)

These operators are again independent of the value assigned to 1.
The operator p^p^ of eqn. (35) will also commute with all operators in 

the new algebra. The irreducible representations of AT A£o are consequently 
spanned by functions of the form

= ^(a,^,y;ir,/no)!^, Z7r0> (60)

where | tt, z%0> is given by (34), and are functions of the internal coordinat­
es, depending parametrically on s, tt and mo. The relation (39) is still valid 
and the energy is given by (38) as before.

Let us assume, in what follows, that mo 4= 0. The form of 99® is then 
completely given, once it is known for ir = 0. The relation is:

(psj(cc,ß,y;-TT,mo') = ??)(pj(a, ß, y ; 0,/n0), (61)

with T] given by (43). We are thus left with the problem of classifying 
(jpsj(x, ß, y ; 0, /n0) further with respect to the symmetry of 3~AAo-



Nr. 12 15

At this point we note that there is another operator besides p^pfl which 
commutes with all operators in the basic algebra, namely w^w^, where

lv[i = (/> * * +p4s, ~ P ■ s), (62a)

(Bargmann and Wigner, 1946). Using (53) and (54) we get, that

= P/iP^iSi. (62b)

This new invariant gives the mathematical justification for the label s in (60).
The components of do not commute with each other. We have, 

however, the very important result:

= 0, (63)

according to which each ip*  may be taken as an eigenfunction for one of the 
new wfl as well. We note, in particular, that •y»® for it = 0 may be chosen as 
an eigenfunction of /?4S3.

For the sake of completeness we also note, that p^wfl is an invariant, 
but since it is identically zero, it is of no use in the present context.

The functions are linear combinations of the (2s + l)2 functions 
Dsmn(a,ß,y) of section 2, but it is readily seen that the 2s + 1 functions cor­
responding to a given value of n constitute an invariant function space under 
all st and x$. Each value of n will thus give rise to an irreducible represent­
ation of with the functions equal to the functions D^ra(a,/?, y),
m = s, s - 1, . . . , - s.

The 2s + 1 irreducible representations (n = s, s - 1, . . . , - s) obtained in 
this way are, however, all equivalent. This follows from general discussions 
on the irreducible representations of (see references following eqn. 
(33)), according to which the representative functions for p = 0 are character­
ized as spanning irreducible representations of 7?(3), the 3-dimensional real 
rotation group. I?(3) is in this context the little group associated with the 
four-vector (0, 0, 0, imoc).

We have thus arrived at the conclusion, that only for s = 0 (which is the 
case already studied in the previous section) is there no redundant degeneracy 
in the classification of the rotor states When s =)= 0 we are left with a 2s + 1 
fold degeneracy.

Any function of the form (60) will satisfy the Schrödinger equation (47) 
with the Hamiltonian (49). This is, however, of little interest in the present 
context, since such a Hamiltonian does not effect the internal coordinates at 
all. We shall consequently look for a more general Hamiltonian by recon- 
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sidering the basic algebra and require that it be satisfied with the substi­
tution (48).

The variable xt = ict commutes with all operators of the substituted 
algebra, and may therefore, without loss of generality, be set equal to zero. 
Thus, we get the substituted operators:

(64)I

(65)= 0,

i
Kt = - xi II + Xi,

c

and the algebraic equations involving II become: 

[H,Pi] 

[H, Ji] 0, (66)

[pi,Kj] = -hôij-H, (68)
i c

= itiEijmKm, (69)

= Lh.EijmJm.

In addition, we have the invariance relation

II2 = c2 p2 + /UqC4. (71)

5. The local Hamiltonians

In searching for solutions to the above relations we begin by noting, 
that (65) and (66) imply that æi,æ2>æ3 and <x,ß,y are cyclic coordinates, i.e. 
II must be of the form

H = H(si,Ci,pf, (72)

as alredv anticipated by (20). The relations (68) and (69) are then auto­
matically satisfied, whereas (67) imposes the conditions
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- [H, xj] - - [H, xj] H = ihpj. (73)
c C“2

The relation (70) is automatically satisfied whenever (73) is.
The necessary conditions on H are thus contained in (66), (71) and (73).
It follows from (71), as well as from (73), that if H is a polynomial in 

pi, then this polynomial must be of the first degree. Any local Hamiltonian 
must thus be linear in the momentum operators. The only other conceivable 
solution is the non-local form

H = a|/c2p2 + /HqC4, a2 = 1 (74)

with a being a function of the Si and Ci-
A short consideration of (66) and (73) shows, that a must commute 

with every Si and x/, and hence the only possible values are ± 1 and ± b, 
with b given by (55) and (57).

We shall not, however, consider the non-local Hamiltonians further, but 
instead confine the attention to local Hamiltonians, as the more satisfactory 
type of operators from a physical point of view.

A local Hamiltonian is, as mentioned above, necessarily linear in the 
momentum operators. Hence, we write it as

H = 2 + pipj, (75)

with 2 and /zj being functions of s$ and Ci- Insertion in (68) shows, that 2 must 
be a function of the Ci alone, and that pj = psj with p depending only on the 
Co Thus we have:

H = 2(Ci) + p(£i)(s ■ pb (76)

To determine the functions 2 and p we insert (76) in (73) and compare 
the coefficients of pi, pz and p3 in turn. It is then found that a necessary 
condition for (73) to be satisfied is, that s^ = Sg = S3 = a non-vanishing 
constant. This is only possible if the operators act in the function space £?i/a,
in which case :

SfSj + SjSi — jVÔii, ! (77)

and
Si Sj — ^hSijkSk, 1 z ,

(78)
Çicj = — 2^etik^k- 1

Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 12. 2
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Hence il follows, that it is impossible to tarn a 3-dimensional rotor into a 
relativistic system with a local Hamiltonian, unless it is endowed with an s 
quantum number of y.

We proceed, then, by assuming the validity of (77) and (78). A and p are 
then linear function of C1,C2,C3. We shall furthermore deviate from (56) and 
(57) by choosing ei as the preferred axis when defining k, i.e. we put

e = ei, (79)
and hence

2 L
« = (80)

Insertion of (77), (78) and (80) in (73) and further comparison of the 
coefficients of pi, p2 and ps leads to the unique result

4c 
= (so

Finally one obtains, from the terms independent of pit

ÂC1 + C1Â = 0. (82)

This relation shows, in the light of (77), that z must be a linear combination 
of £2 and £3, and since no preference has been given to any of the axes 
perpendicular to a we may set

A = A£3, 
with A being a constant.

Thus we obtain the Hamiltonian

(83)

4c
H = A £3 + — £i(s -p). (84)

To determine A we square II and compare with (71), while using (77). 
This leads to the values

and hence :

2
A = ± - ni0 c2,

h (85)

2 4c
H = ± -

h
71?oC2C3 + ~ £1($ •/>).

FF (86)

The eigenfunctions of II are of the form (22) with s = i.e.
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Vk(r’x>ß>y) = 2 ^,fc(r)ö*( a’ß>7)’ (87)
i = 1

where Oi, 62, Ø3, 04, are the functions specified by (17). The equation of 
motion is of the form (47). It becomes identical with the Dirac equation 
when transformed to a matrix representation.

into the equation of motion (47), i.e.

6. The Dirac equation

The transformation 
expansion

mentioned is obtained by substituting the general

= 2 Vt(r,t)di(<x.,ß,y) (88)
i = 1

(47)

with H as given by (86). The inner product is then formed with Øi, O2, Ø3, O4 

in turn and the orthonormality relations (15) utilized. As a result one obtains:

dip
( ± inoc2ß + ca • p)ip = th—, (89)

where ip is a column vector with ipi, ipz, ip3, ipi, of (88) as components, and

ß =
I O’

0 -I
(À- = 1,2,3). (90)

I is the two-dimensional unit matrix, and

0 1’ 0 — 1 T o’
(71 = , <72 = , <73 =

1 0 t 0 0 - 1
(91)

become the Pauli spin matrices when 1 is assigned the value i.
Eqn. (89), with the upper sign in front of inoc2ß and t = i, is in fact the 

Dirac equation in its Hamiltonian form. The ambiguity in sign of the first 
term will be commented on in section 13. Until then we shall adopt the plus
sign in (86), and write 

H = m0c2^ + ct/s' •/>), (92)
2*
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where the primed operators, introduced for simplicity, are equal to the
2 

corresponding unprimed ones, multiplied by
ll

The present derivation of the Dirac equation is, of course, rather different 
from Dirac’s own, since it is based on a model (albeit a very well-defined 
one) rather than on the purely mathematical properties of hypercomplex 
numbers. The principles underlying the two derivations arc, however, the 
same, and they may therefore supplement each other in a fruitful way. It is 
interesting to note, that the 4-dimensional matrices oi and qi occurring in 
Dirac’s paper (Dirac, 1928) are nothing but the matrix representatives of 

2
our Si and Ci operators multiplied by —. The sign of Q2 is the opposite of 

h
ours, though, and the minus sign in the second of the relations (78) is thus 
absent in Dirac’s equivalent relation.

We shall now consider the solutions of (47) in the light of the previous 
sections, with the aim of showing the coherence of our approach. We close 
the present section with the obvious remark, that the functions (88) are 
independent of the basis chosen in In other words: if one prefers to 
take four orthogonal conbinations of the functions (17) as a new basis, then 
this has no effect upon the analytical form of *P.  The matrix representation of 
(47) will, however, now be different from (89). The fundamental relations 
(77) and (78) will, on the other hand, be satisfied by the matrices in any 
representation. This expresses the so-called representation independence of 
the Dirac equation.

7. The solutions of the Dirac equation

The solutions of the equation

(47)

with H given by (92) are, of course, equivalent to the solutions obtained by 
the more conventional theory, as presented in wellknown textbooks (e.g. 
Bjorken and Drell, 1964; Sakurai, 1967). Referring to the discussion in 
section 4 we may present the results of solving (47) in the following way.

The solutions of (47) span two irreducible representations, Fand 1\ of 
These representations become the complex conjugate of each other, 

when the basis functions spanning them are generated by means of the
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operators (32), (58) and (59), starting from the two complex conjugate pairs
of functions:

0i = 0i(a,/3,y)exp(-nn0c2//h), ]

02 = 02(a,y)exp(-imoc2f/h), |

and
01 = 04(a,/?,y)exp(mioc2f//i), 1

02 = - 03(a,/5, y)exp(t77?oc2//h).

Let us construct the functions obtained by performing a homogeneous 
Lorentz transformation corresponding to the direction

e = tt/ti (95)

and the parameter given by (43).
The functions exp (±imoc2t/Ii) are transormed similar to (42). The Oj 

functions are transformed by means of the operator

Â(e,?y) = exp(—• x//î), (96)

with X given by (80). Introducing the primed operator

this becomes

(97)

(98)

Applying standard trigonemetric formulae in connection with the expression 
(43) for tan rj we obtain

where

c
E I + 7710 C2

(99)

(190)

Thus, we get:

Â(e,rz) =
2

Cl(îT-s')1 (191)
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The functions obtained from (93) and (94) are now readily seen to be

(tIz O3 + 7l+ 04)

(%_03 - 7T204)

(%- 01 %z 02)

(%Z 01 + 7t+ 02)

exp (rrr • r//z)exp(- 11 E | t/li),

exp(trr • r/h)cxp(- 11 E | t/lï), 

exp(- rrr • r/7z)exp(t | E | t/h),

exp(- rrr • r//z)exp(t | E | tjti),

(102)

(103)

7T_|_ — 711 i 1^2 • (104)

The functions (192) are eigenfunctions of H and p with eigenvalues 
I EI and it, respectively. The functions (103) are eigenfunctions of the same 
operators with eigenvalues — |E| and — rr.

The function space available for a Dirac particle is the direct sum 
Q ® Q of the two spaces 42 and 42, obtained by operating with all operators of 
the form (32), (58) and (59) on the functions (93) and (94), respectively. 
A function in 42 represents a particle state, a function in 42 an antiparticle 
state. A function with components in both 42 and 42 represents a super­
position of a particle and an antiparticle state.

8. Charge conjugation symmetry

There is a one-to-one correspondence between the functions in the spaces 
42 and 42 specified in the previous section, two corresponding functions 
being the complex conjugates of each other. This reflects, that whenever a 
function llJ is a solution of (47), then the same is true for the complex 
conjugate function The process of complex conjugation is thus an invari­
ance operation of the theory. In the following we shall identify this operation, 
which we denote by C, with the charge conjugation operation of the con­
ventional theory.

The operator effecting the operation C is defined by

CopV = «Ê (105)
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with ~ denoting complex conjugation. It has the obvious property

C = 1. (106)

From the explicit expressions (17) we obtain the following relations, already 
used in passing from (93) to (94):

01 = 04,

02 = - 03,

03 = -02,

04 - 01.

Hence, we get for an arbitrary function of the form (88), i.c.

that
W = 01^1 + 02V>2 + 03^3 + 04^4, (108)

Cop^ = - °3V)2 - (100)

where — in order to facilitate comparisons with the conventional therory - 
we have used * to denote complex conjugation of a function independent ol 
a, ß and y.

This result may conveniently be written as

“o 0 0 1 “

0 0 -1 0

0 - 1 0 0 %
1 0 0 0 T?

(110)

The 4x4 matrix occurring in this relation is readily identified with Dirac’s 
—/2. It is equal to iy2 in the tensor notation by c.g. Bjorken and Drell 
(1964). Our simple definition (105) of the charge conjugation operation is 
then seen to coincide with Bjorken and Drell’s. It dillers from e.g. 
Sakurai’s (1967) in sign. (Definitions in the literature may vary with an 
arbitrary phase factor).

The operators (32), (58) and (59), from which the operators of 
are constructed, are all real (see also (101)). This implies that C commutes 
with all elements of Hence, we may construct the direct product group 

x where
= {£,c}, (Hl)
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E being the identity operation. The function space £?©£>, which contains 
the totality of solutions of eqn. (47), defines then a single irreducible re­
presentation of tø x This group is thus an invariance group of the theory.

In the following sections we shall augment this invariance group further 
by adding the space and time inversion operations.

9. Space inversion

The process of space inversion, P, replaces r by - r and thus also p by -p. To determine its effect on the internal axes of the rotor it is necessary 
to go beyond the assumption made in section 2, that the vectors n and of 
eqn. (1) merely represent mathematical points. We must now assume, that 
they in some way or other have a physical significance, such that they are 
replaced by — ri and - r? under inversion.

With this assumption it follows from (2), that the directions of ei and 
C2 are reversed under P, whereas e% is left unchanged. The effect on the 
Euler angles is accordingly:

a -> a, ß -> ß, y -> y + n. (112)

The functions 0i and O2 in (17) are thus multiplied by t under inversion, 
Ô3 and O4 are multiplied by — t. This result is in accordance with the assump­
tion of the conventional theory, that space inversion is effected by the matrix 
aß, where ß is defined by (90) and a takes one of the four values ±1, ±i 
(see e.g. Bjorken and Drell, 1964; Sakurai, 1967).

Adopting (112) we see from (7), that si, S2 and S3 are unchanged under 
inversion. (8), as well as (9), shows that Ci and C2 change sign, whereas £3 
remains unaffected.

The relativistic description of a spinless particle is invariant under space 
inversion, i.e. its symmetry group may be extended from 2E0 to p, the 
orthochronous, inhomogeneous Lorentz group. Within the algebra defined 
by the operators (24) and (30) P has the following effect:

p ^ p, p \, l > I, k>k. (113)

The substitution (48) requires that 

H-+H, (114)

a condition which is certainly satisfied by the Hamiltonian (49).
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The relations (113) and (114) must likewise hold for the generators 
associated with the relativistic rotor, if we require that P be a symmetry 
operation in this case as well. In particular, we must require that

s -> s, K - K. (115)

s is, in fact, unaffected by P. But in order that k change sign we must require 
that b, as defined by (53), change sign. Ç3 is unaffected by P, and the choice 
(56) is thus an unacceptable one. For s = -y we must choose ô as a linear 
combination of Ci and C2 alone, as was in fact done in section 5, by (80).

The fact that (56) is an invalid choice, if P is present as a symmetry 
operation, does not in any sense make the general conclusions of section 4 
invalid, since these only refer to the properties of and its represent­
ations.

Considering now the requirement (114), we get a narrowing of the condit­
ion on Â in passing from (82) to (83), namely that /. must be a constant 
times C3, in accordance with the actual choice (83).

The Hamiltonian (86) is then unaffected by P, and the description which 
we have constructed on the basis of section 5 is invariant under space 
inversion. This remains true also after the inclusion of the charge conjugation 
operation, since it is evident that C and P commute. We may thus extend 
the invariance group of the theory from tø x to tø

10. Time inversion

The problem of reversing the direction of lime has attracted much 
attention in the physical literature (see, e.g. Davies, 1974). To-day’s discus­
sions of the problem are often based on the so-called time reversal operation 
T (see, e.g. Bjorken and Drell, 1964), originally introduced by Wigner 
(1932). Here, we shall define a simpler — and from a relativistic point of 
view more natural — operation, which we shall denote T' and call the time 
inversion operation.

The effect of T' on the external coordinates is to replace t by t and thus 
also p4 by -7)4. Hence, we get the following result for the operators (24) and 
(30) of the basic algebra for a spinless particle:

p >p, p^ ^ - px, l >l. k ^ k. (116)

The substitution (48) requires, that if T' is to be accepted as an invariance 
operation, then we must demand that
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H^-H. (117)

This condition is certainly not fulfilled for the Hamiltonian (49). The 
description of a spinless particle, as developed in section 3, is thus not in­
variant under time inversion.

For a particle with spin we require that the internal generators be 
transformed similarly to (116), i.e.

s -> s, k — k. (118)

It is now easy to verify that all three relations (116)—(118), with H as given 
by (86), are satisfied, if we define T' as the process, which besides transform­
ing t into — t changes the Euler angles according to the scheme:

a -> a + 7i, ß -> ti - ß, y -+ % — y. (119)

This corresponds to a 2-fold rotation about the e2-axis, just as (112) corres­
ponds to a 2-fold rotation about the e3-axis. The effect on the Ci operators is:

Ci-*-Ci,  C2->C2, C3-*-C 3- (120)

The functions (17) are transformed thus:

Gi O3,

02 -> O4,
(121) 

03^-91,

G4 — O2 ,

Hence we obtain, from the explicit expressions (102):

T'Wi - ^3 = cos^ 03 -
c

I EI + nioc2
(^2 Oi ^+02) exp (nr • r/h) exp (11 E | t/h),

exp(«TT-r/h)exp(i | E\t/h).
(1

The functions *#3  and may, just as well as the function Ÿh and *7 72 in (103), 
be used as representatives for the function space Q. ^3 and ^4 are, in fact, 
equal to - *̂ 2 and Wi, respectively, with -ir substituted for it. The effect of 
T' on W3 and W4 is:

T'^3 =

T'^4 = -^2.
*)*•
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Hence, the time inversion operation converts a particle state into an anti­
particle state and vice versa, I he velocity of the Lorentz frame associated 
with the particle being reversed during the operation.

Adding the time inversion operation to the operations of«i/\5fp, leads to 
the full inhomogeneous Lorentz group .T. The charge conjugation oper­
ation commutes with T' just as it commutes with all other elements of«^”j5?, 
and the full invariance group is thus found to be x JF.

This important result justifies the introduction of T' and demonstrates 
the fundamental nature of this operation. To anchor it further, let us de­
monstrate the consistent transformation properties of the 4-vectors of our 
theory, with respect to space and time inversion.

A 4-vector = (a, «4) is a set of four quantities satisfying a relation 
similar to (29), viz.

[^/LIV ’ flÅ ] = ~ (124)

The following expressions are readily found to correspond to 4-vectors:

æw = (r, ict),

Pfl =

Wfl ( P x * + 7>4 S, - p • S),

The matrices associated with the operators y^ and the basis (17) are, when 
i = i, identical with the y^ matrices of the conventional theory, in the notation 
of Dirac (1928) and e.g. Sakurai (1967). The y' operators turn up in a 
natural manner, when (47) is multiplied from the left with C3, to give the 
equation

(moc += 0. (126)

Using the properties of the P and T' operations as described above, it is 
easily seen that x^p^ and y' transform according to the scheme:

(23)

(24)

(62a)

(125)

P(a, o4) = (- a, CI4), 

T' (a, a4) = (a, - a4), (127)

whereas iv„ transforms as follows:

7J(w, 1P4) = (w, - m4), 

T' (w, in4) = (- w, u?4).
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These transformation properties characterize xfl, and as ordinary 
4-vectors, as a pseudo-4-vector. For all four vectors it holds, that

PT'afi = 7''7% = - V (129)

The “strong inversion” operation PT' = T'P will be the subject matter of the 
following section.

The possibility of defining a time inversion operation with the above 
properties in the case of a Dirac particle suggests, that a similar operator 
may be defined for other elementary systems as well. Let us, for the moment, 
assume that this is possible for the electromagnetic field. This field is 
characterized by a 4-vector

= (J,^), (130)

where A is the vector potential and cp the scalar potential. It is well known, 
that

P(A,i(p) = (- A,icp), (131)

and comparison with (127) makes us therefore expect, that

T'(A,ùp) = (A, - i(p). (132)

Suppose now, that the source of is a charged Dirac particle. The 
field associated with the corresponding antiparticle must then be (A, - i(p\ 
In other words, a particle and its associated antiparticle must have equal, 
but opposite, charges.

That this is indeed the case is of course well known. The interesting 
thing in the present context is, that we have tied the conclusion to the pro­
perties of the full Lorentz group, rather than to the properties of the charge 
conjugation operation. A more appropriate name for the latter, is, in fact, the 
often used alternative: the particle-antiparticle conjugation operation.

11. Strong inversion, alias the PCT-operation

Combining the operations P and T' leads to what we shall call the strong 
inversion operation, I. It changes x^ into while the Euler angles 
undergo the transformation corresponding to a 2-fold rotation about the 
ei-axis, i.e.

a + 7t, ß -> n - ß, y -+ — y. (133)
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Hence, wc get:

The functions (17) are transformed thus:

/[ØIØ2Ø3O4)] = — I [03 04 01 02 ],

and for the general function (108) we obtain:

1 2 Vi (æ/z)
i

0

6 [01 02 03 04]
0
1

0 1 0

0 0 1

0 0 0

0 10 0

Vl(- ætz)

Va(- -r/z) 

Vs(-æ/z)

V4(- æiz)

(134)

(135)

(136)

The 4x4matrix in (136) is the matrix representative of the operator It 
is readily identified with the matrix

75 = 71/27374 (137)
of the conventional theory.

A comparison with e.g. Bjorken and Drell (1964) shows us now, that 
I has the same effect on a general wavefunction as the so-called PCT- 
operation. Hence, we have arrived at an alternative and simple interpretation 
of this fundamental operation.

The relation between the operations P, T', I and the 2-fold rotations 
about the three internal axes of the rotor is a nice illustration of the group 
theoretical fact, that the factor group of ST with respect to the invariant 
subgroup '0 is isomorphic with the group D^.

12. Wigner’s time reversal operation

Combining the operation T' and C leads to the operation

T = CT', (138)

which we shall now identify as Wigner’s time reversal operation. The effect 
of C is to leave x^ unaffected, while each operator of the basic algebra (and 
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thus also H) changes its sign. The effect of T' was considered in section 10. 
Hence we get:

r-> r, /-> — /,
P ~ p, p4~> pi, II~> II,

1 + I, k>ks> S,K->K,

41W 41, ^2-*  — 42, 43 ~*  4.3 •

(139)

found by combining (121)

(140)7’2öi^i(r, 0 = [0102 03 04] 
i

The effect on the general function 
with (109):

(108) is

0 1 0 0" - 0”
-1 0 0 0 - 0

0 0 0 1 V?3 (r> 0

0 0 -1 0 vi(r, - o

bhe 4x4 matrix in (140) is equal to t times the matrix representative of s2, 
and equal to the matrix — yi/3 of the conventional theory.

Thus, the relations (139) and (140) establish the assertion, that the 
complicated operation known as Wigner’s time reversal operation may be 
considered as a compound operation, made up of the two elementary 
operations C and T'.

With this result, we have seen that all the symmetry operations of the 
conventional theory have a simple representation within the rotor model. It 
is further worth-while noting, that this model leads to a clear understanding 
of the way in which antilinear operators enter the theory: All operations of 
the group correspond to linear operators, the fundamental antilinear 
operation being the operation C.

13. Some general remarks

The rotor model as developed so far is a one-particle model, and the 
comparisons we have made with the conventional theory have, accordingly, 
not included references to discussions based on field theoretical descriptions. 
There is, of course, a very extensive literature on the symmetries of the 
quantized Dirac field (see e.g. Kemmer el al., 1959; Muirhead, 1965). This 
literature leaves the general impression, that an operation like the PCT 
operation has its roots in the connection between spin and statistics (Pauli, 
1955; Lüders, 1957). We have no reason to doubt that this is true in general, 
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but would like to stress that the PCT operation as it occurs in the present 
treatment is a very simple operation. The presence of the letter C in its 
designation is in fact misleading, since it appears as a genuine operation of 
the group ££, of which C is not a member.

As far as C itself is concerned, we may obtain a clearer understanding of 
its nature by tying it to the presence of the indicator i, which we have carried 
through as an unassigned quantity. This is, however, best discussed else­
where.

Finally, we shall consider the ambiguity in sign of the first term of the 
Hamiltonian (86). We have so far developed the theory with the plus sign, 
but it may equally well be developed with the minus sign. The only difference 
in the resulting wavefunctions is, that the (r,f) dependent parts in (102) and 
(103) are interchanged. In the conventional theory one could talk about an 
interchange of the large and the small components of the wavefunction, and 
there would be no basis for believing that one had obtained anything but an 
alternative description of the same physical situation.

If, however, one adopts the rotor model, then there is no way of trans­
forming the time-dependent wavefunctions corresponding to the two different 
signs into each other, and the two Hamiltonians must be considered as 
physically different, i.e. they must be associated with two different types of 
Dirac particles. It is, however, easy to see that the two types of particles will 
behave similarly in an electromagnetic field; the type of interaction which 
can distinguish between them must be of a different nature.

We are, of course, unable to settle the question as to whether such an 
interaction exists or not. If it does not, then one is free to choose either sign 
in the Hamiltonian. If, however, is does exist, then one might perhaps 
imagine a connection to the electron-muon problem.

14. Conclusion

The discussion of sections 7—12 illustrates (he type of natural inter­
pretation one obtains by considering a Dirac particle as a quantum mechan­
ical rotor. The preceding sections taught us, that the only type of behaviour 
that a relativistic, quantum mechanical rotor can adopt, is that of a Dirac 
particle.

Thus, we arrive at the conclusion, that the Dirac particle and the quantum 
mechanical rotor are identical dynamical systems. In other words: a Dirac 
particle is neither more nor less than a particle, for which it is possible to 
talk about an orientation in space.
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1. Statement of the Problem

During the Jast two decades all the effects predicted by Einstein’s theory 
of general relativity and gravitation (EGRG) have been experimentally 
verified with a reasonably high degree of accuracy. It is true that these tests 
are concerned with cases only where the gravitational field is comparatively 
weak; but the simplicity and generality of the principles underlying the 
theory as well as its intrinsic consistency and cogency made it reasonable 
to assume that the theory be valid for stronger fields also.

However, at the same time investigations concerning the stability of large 
amounts of mass led to strange results which implied a serious crisis for 
EGRG, or for physics itself if this theory is taken for gospel truth. In fact it 
was shown1) that a sufficiently large amount of matter according to EGRG 
will undergo a steady contraction under the influence of its own gravitational 
field. After a finite time as measured on a standard clock following the 
matter, the system is engulfed in a ‘black hole’ from which no message can 
be sent into the outside world, and after a further very short time the system 
collapses into a singularity, where not only the mass density is infinite, but 
where the space-time metric itself becomes singular.

Thus, according to Einstein’s theory a well-defined physical system may 
after a finite time pass over into an unphysical state, where the notions of 
space and time become meaningless. Since these notions enter in an essential 
way in the formulation of all physical laws this means the breakdown of 
physics; for one cannot know what will come out of a singularity, and it is 
then not possible any more to predict the future.

For a long time many physicists (including myself) did not believe that 
Einstein’s otherwise so usccessful theory had such disastrous consequences2) ; 
but by now there seems to be a consensus of opinion that these space-time 
singularities are inevitable, whenever the energy-momentum tensor, which 
in Einstein’s theory represents the source of the gravitational field, satisfies 
certain physically reasonable conditions. Some physicists have tried to main­
tain that the situation is not so bad ; for the final collapse of the system into 
the singularity is preceded by its passage through the Schwarzschild wall 

1*  
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(the event horizon) that delimits the black hole, and in this state no light or 
any other signal from the system can penetrate into the outside world, so 
that the final collapse is totally unobservable from outside. Moreover, an 
observer at a constant distance r outside the Schwarzschild wall with radius 
a will strictly speaking never experience the formation of the black hole ; for 
measured on a standard clock at rest at constant r > a the formation of a 
black hole will take an infinite time, in contrast to the finite time as measured 
by a standard clock following the matter. (An extreme example of the rela­
tivity of time.) However, this attempt of explaining away the difficulty is not 
very satisfactory. What about observers that are sitting on the collapsing 
matter, should the laws of physics not be valid for them? Was it not just one 
of the main requirements of general relativity that these laws should be of 
the same form for arbitrarily moving observers?

Other physicists hope that a quantization of the metric field along the 
lines followed in quantum electrodynamics could prevent the collapse into 
the singularity, similarly as the introduction of Planck’s quantum of action 
into mechanics and electrodynamics prevents the collapse of the Rutherford 
model of the atom. Indeed it would seem reasonable to expect quantum 
gravitational effects to be important for the very strong fields in the small 
regions of space-time in the vicinity of a singularity. However, in the first 
place it does not seem possible to carry through the quantization program 
for the gravitational field along the same lines as in quantum electrodyna­
mics, because the non-linear gravitational field of general relativity is bas­
ically non-renormalizable. Moreover the root of the trouble does not seem 
to lie exclusively in the very small regions near the singularity, but rather in 
the whole usually macroscopic domain of the black hole.

In a number of interesting papers Hawking3), Wald4) and Parker5) have 
shown that black holes create and emit particles at a steady rate. It is main­
tained that this radiation will cause the black hole to lose mass and even­
tually to disappear, leaving a naked singularity behind. In this situation there 
is a basic limitation on our ability to predict the future, which Hawking6) 
has formulated in a new physical principle—the randomicity principle. 
According to this principle all configurations for particles emitted from a 
black hole singularity compatible with the external constraints are equally 
probable. This means that a complete set of data on a space-like surface is 
not sufficient in general to determine with certainty the behaviour of a sys­
tem, since information may disappear into or suddenly appear from a hole 
singularity.

The randomicity principle implies a much more radical departure from 
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the deterministic description of classical physics than that which was brought 
about by the principles of quantum mechanics. In the latter theory it was 
recognized that the deterministic Newtonian equations of mechanics could 
not be used to predict the motion of an electron exactly, because this would 
presuppose that we can know the initial position and momentum of the elec­
tron exactly, which is impossible according to Heisenberg’s uncertainty prin­
ciple. On the other hand, the randomicity principle claims that the future 
state in certain cases may be undetermined even if the initial state is well- 
defined, which would make physics truly indeterministic.

This is such a serious departure from the philosophy, which has been the 
mainstay of physics since Galileo, that many physicists will ask if this step 
is really necessary. Could it not be that Einstein’s classical theory of gravita­
tion, on which Hawking’s conclusions are based, breaks down in the case of 
very strong gravitational fields. After all the theory has been experimentally 
verified for comparatively weak fields only, and surely Einstein’s theory like 
all other theories must be expected to have a limited domain of appli­
cability. In fact, in the past the occurrence of essential singularities in a 
physical theory has usually been taken as a sign that the theory has been 
applied in a region that lies outside its domain of applicability.

As an example let us recall the situation concerning the black body radia­
tion which caused Max Planck so much trouble around 1900. If one applies 
the laws of classical physics in calculating the energy density of the radiation 
inside a cavity in thermal equilibrium, one obtains the formula of Rayleigh- 
Jeans, according to which the energy density per unit frequency interval is 
proportional to the square of the frequency v. Thus the total energy density, 
obtained by integrating over all v, is infinite which obviously is meaningless. 
This “ultra-violet catastrophe’’ indicates that we have applied the laws of 
classical physics to a phenomenon that lies outside their domain of appli­
cability. Using instead the laws of quantum physics, that are valid also for 
large v, we are led to Planck’s formula for the energy density which gives 
finite results.

Similarly one would be inclined to think that the occurrence of essential 
singularities in Einstein’s theory indicates that this theory breaks down in 
the case of very strong gravitational fields — a thought that was not unfamiliar 
to Einstein himself7). This point of view is supported by the circumstance that 
EGRG actually ceases to be a physical theory connecting measurable phys­
ical quantities already before the system passes into the singularity. In order 
to measure the metric, for instance, we need an instrument which measures 
the proper time, i.e. a physical clock which shows the same time as the 
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ideal standard clocks with which one operates in general relativity8*.  It is 
well-known that an oscillatory system with atomic frequency represents an ex­
tremely good standard clock in ordinary gravitational fields. However, as was 
shown in a recent paper9* any such clock ceases to give the correct proper 
time when approaching and before actually reaching a singularity. For this 
reason we concluded that the proper time and therefore also the metric itself 
lose their physical meaning already somewhat outside the singularities in 
question.

Under these circumstances it seems imperative to investigate the possi­
bility of constructing a theory of gravitation for macroscopic matter that is 
free of singularities and at the same time retains all the satisfactory features 
of EGRG. According to the preceding discussion this would presumably have 
to be a theory in which there are no black holes and which gives the same 
results as Einstein’s theory at least for weak fields up to the second order of 
approximation. However we would have to require more than just that ; for 
there can be no question of returning to the ideas prevailing in physics 
before 1915. A number of the principles on which Einstein based his theory 
must be regarded as irrevocable.

In the following we have listed the most fundamental assumptions and 
properties of EGRG which it would be desirable to retain in a generalized 
theory:

A. Space-time is a manifold with a pseudo-Riemannian metric. The metric 
tensor gtk is a physical quantity that can be measured in principle by means 
of standard clocks, and the determinant g = det (gik) is everywhere negative:

I7<0. (1.1)

All physical laws are expressed by equations that are covariant or form-inva­
riant under arbitrary transformations of the space-time coordinates.

In these equations the measurable quantities gtk enter in an essential way 
along with the other physical quantities that describe the phenomena in 
question. The form-invariance of the equations is the mathematical expres­
sion of the general principle of relativity, according to which the funda­
mental laws of nature, obtained by experiments, are of the same form ir­
respective of the state of motion of the observers. Thus, for the first time in 
the history of physics a given set of phenomena is described by a uniquely 
determined set of equations. This inalienable property can be regarded as 
the crowning touch of a long development of physics from Aristotle over 
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Galileo and Newton to Einstein — a development that is characterized by a 
constantly increasing symmetry or form-invariance of the laws of nature 
under ever wider groups of transformations.

B. Another precious acquisition of EGRG is the fusion of gravitation and me­
chanics. Einstein’s gravitational field equations do not onlg determine the gra­
vitational field for a given matter distribution, but also the motion of the mat­
ter source is determined by these equations: the mechanieal equations of mo­
tion are consequences of the field equations.

For incoherent matter the equations of molion of an infinitesimal piece 
of matter following from the field equations are identical with the equations 
of motion of a freely falling test particle.

C. A basic assumption in EGRG is the equivalence principle, according to 
which the effects of a gravitational field can be ‘transformed away' in an 
infinitesimal region around a given event point P by introducing a system of 
coordinates that is geodesic at P. Moreover, if this system is locally Lorentzian, 
all the physical laws at P are of the same form as in special relativity.

As an immediate consequence of this principle gravity must effect the 
trajectories of all freely moving particles in exactly the same way inde­
pendently of the mass of the particle. In the case of the gravitational field 
of the earth this has now been verified experimentally to the very high ac­
curacy of 10-11 by Dicke10) and Bragnisky11) and their co-workers. Thus at 
least for weak gravitational fields this consequence of the principle of equiv­
alence can be regarded as well established.

For a matter system with the energy-momentum tensor Tik it follows 
from the principle of equivalence that the ‘conservation laws’ in a general 
system of coordinates must be of the form

7V:Jfc = 0 (1.2)

where ; k denotes the covariant derivative formed by means of the Christoffel 
symbols corresponding to the metric tensor gu. Thus according to B the 
equations (1.2) must be consequences of the field equations.

Further it follows from C that the world line of a freely falling particle 
is a geodesic in the 4-space with the metric tensor gtk.

D. The gravitational field equations are derivable from a Lagrangean prin­
ciple with a Lagrangean density which is a scalar density under the group of 
general coordinate transformations. In this way the general covariance and 
the compatibility of the field equations are secured.
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E. The field equations are partial differential equations in the field variables 
of not higher than the second order. This is essential for obtaining a Cauchy 
problem of the usual kind.

F. In Einsteins theory the gravitational field is assumed to be exhaustively 
described by the metric tensor guc alone.

According to 1) and F the gravitational part of the Lagrangean integral 
is of the form J L [/- g dx, where L is a scalar constructed from the gtk and 
their derivatives. Among the numerous independent scalars of this type, the 
curvature scalar R plays a special role. In fact, only with L = R do we get 
field equations of the type E. Thus the assumptions A-F lead uniquely to 
EGRG, with the field equations

Guc = — (1.3)

The Einstein tensor Gtk is a function of the gik and their space-time deriva­
tives up to the second order and Tik is the energy-momentum tensor of the 
matter source, which depends on gtk as well as on the matter variables. 
On account of the Bianchi identities the divergence of the Einstein tensor 
vanishes identically, i.e.

Gik;k = 0.

Hence the “conservation laws” (1.2) arc consequences of the field equations 
in accordance with B and C.

For incoherent matter we have

Tf = pQUiUk, (1.4)

where go is the proper mass density and IE is the four-velocity of the matter. 
With this expression for the energy-momentum tensor the equations (1.2) 
yield

(goU^-k = 0 (1.5)
and

— ^Ui.,kUk = 0. (1.6)
dr

(1.5) expresses the conservation of proper mass, while (1.6) shows that the 
world line of a particle in the incoherent matter is a geodesic, as it should 
be according to B and C since the particle is freely falling.

The remarkable wholeness of EGRG makes a generalization of this theory 
a difficult job. At least it would obviously be necessary to give up some of 
the assumptions contained in A-F. The properties A, B, I) and E are so 
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essential that they hardly can be abandoned and also C seems indispensable. 
The equivalence principle is well established at least for weak gravitational 
fields. Then remains a possible change of assumption F.

We have already mentioned that EGRG is the only possible theory if we 
assume that the gravitational field is described exclusively by the metric 
tensor 9^. Therefore we shall tentatively assume that there are as yet un­
discovered properties of the gravitational field which cannot be described by 
the metric field only. Thus besides the gtk, that certainly describe the field 
correctly for weak fields, we introduce additional field variables that play 
a role for strong gravitational fields only. The most primitive assumption is 
that the new gravitational field variables are independent tensor fields em­
bedded in the Riemannian space with the metric 9«. However, as we shall 
see now, this does not work.

Let us consider the case of an antisymmetric tensor field which 
satisfies equations of the same form as the Maxwell equations in general 
relativity, but with the electric rest charge density replaced by the proper 
mass density*  multiplied by a new universal constant Â. Then the formalism 
is entirely analogous with the Einstein-Maxwell equations for electrically 
charged matter. The field equations for the metric tensor will be influenced 
by the presence of the P-field since the energy-momentum tensor of the latter 
field will act as an extra source along with the energy-momentum tensor of 
the matter. From B it follows then that a “freely falling’’ particle of proper 
mass mo is acted upon by a gravitational four-force

ki = ÅmorikUklc (1.7)

on the analogy of the electromagnetic Lorentz force.
The extra gravitational force between two massive bodies following from 

(1.7) is repulsive, independent of the sign of Â, and it increases indefinitely 
with decreasing distance, which might help preventing a gravitational col­
lapse. On the other hand, the presence of the force ki means that the equiv­
alence principle C is not exactly valid. In a locally Lorentzian system of 
coordinates the gravitational field is not completely transformed away. How­
ever for sufficiently small À, C may still be approximately valid for weak 
gravitational fields.

The solutions of the metric field equations are in this case quite analogous 
with the solutions of the Einstein equations given by Reissner12) and Weyl13) 
for the electromagnetic case. In the empty space outside a spherically sym-

* Strictly speaking this is possible for incoherent matter only. In the general case the proper 
mass has to be replaced by the conserved “bare mass’.
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metric distribution of matter we liave therefore in a system of “curvature 
coordinates” {r, 0, (p, ct}:

with
ds2 = adr2 + r2(d02 + sin20dg?2) — bc2dt2 (1-8)

(1-9)

Here the constant a is approximately equal to the Schwarzschild radius, i.e.

xMc2
4 71

(MO)

and for the constant ß we get approximately

22
2xc4

(MO

Instead of the single event horizon in the Schwarzschild solution, we have 
in (1.8) two horizons in general, viz. at the values of r for which b = 0. 
a and b will be everywhere positive only when ß2/a2 > or by (1.11), when 
the dimensionless quantity 22/xc4 satisfies the condition

(1-12)

in which case black holes would be excluded. However, in order to have 
agreement with EGRG and the experiments in the case of weak fields in 
particular as regards the red shift effect, it can be shown that 22/xc4 cannot 
be larger than 0.005, i.e.

Â2/xc4«l. (1.13)

Since (1.13) is in contradiction with (1.12), the introduction of the P-field 
does not solve our problem.

Let us now consider the case where the extra gravitational field is 
described by a scalar V7 with field equations

(1-14)

Here again 2 denotes a coupling constant and //o is the proper mass density.
In this case we have instead of (1.7) a gravitational four-force
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k^-Åmort. (1.15)

The corresponding extra gravitational force between two particles is attrac­
tive and increases indefinitely with decreasing distance. Therefore there is 
not much hope of avoiding the singularities of EGRG in this way.

However, a suitable combination of the fields T'a and seems to be 
promising. If the coupling constants 2 of the two fields are equal we have 
instead of (1.7) and (1.15)

kt = Åmo(TikUklc- Ti). (1-16)

In the Newtonian approximation, i.e. for weak fields and small velocities, 
it can be shown that the two terms in (1.16) cancel, so that the theory is in 
accordance with the results of classical celestial mechanics, even if 22/xc4 
is of order 1. The extra force on a particle at rest in the field of a spherical 
distribution of matter vanishes for large distances r, but for decreasing r this 
force is increasing and repulsive, so that there is a hope of avoiding col­
lapse with this combination of fields.

A closer investigation of the solution of the metric field equations in the 
static spherically symmetric case shows that the conditions for the absence 
of event horizons is again approximately given by (1.12), which in this case 
is compatible with classical celestial mechanics in the Newtonian approx­
imation. However if we go to the next approximation and consider the peri­
helion precession of planets, the theory gives a formula for the precession 
Acp that deviates from the expression Acps in Einstein’s theory by a factor 
(1 -22/xc4):

Acp = A<pe(1 — (1.17)

Thus even with the lowest value of 22/xc4 compatible with (1.12) we get a 
value for the perihelion precession in distinct disagreement with the observa­
tions.

Another serious difficulty is the following fact. The four-force (1.16) is 
not a true mechanical force of the Minkowski type14), since

dT
ktU*  = -ÅmortUi = 2m0 — * 0. (1.18)

dr

This means that the proper mass mo of a particle is not constant in a gravita­
tional field. Indeed from the equations of motion of a freely falling particle

DmoUi
dr

= ki (1-19)
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we get
dniQ 1 . Xm^dP
dr c2 1 c2 dr

The solution of (1.20) is

77?o = 777q (0) ß c’

(1.20)

(1-21)

where 777o(O) is the proper mass for ’Z7 = 0 i.e. in a system of inertia.
Thus the value of the proper mass of an electron, for instance, varies 

with the scalar gravitational potential P. Therefore also the standard fre­
quency of a transition in an atom depends on P and this dependence may 
even be different in atoms of different constitution. The shift of spectral lines 
arising from this effect has to be added to the Einstein shift. In the gravita­
tional field of the sun or the earth, and with a Â satisfying (1.12), ÅP is of 
the same order of magnitude as the Newtonian potential /, so that this new 
effect should have been noticed in the experiments of Pound15) and colla­
borators, by which Einstein’s formula was verified with a high degree of 
accuracy.

If one goes to more complicated tensor fields than the rik and it
seems that it is not even possible to maintain B. It was bad enough that C 
could be satisfied approximately only in the just treated cases, but it would 
seem quite out of question ever to give up B. Therefore we have come to the 
conclusion that a generalization of Einstein’s theory in accordance with 
known facts cannot be obtained by assuming that the metric quantities 7a 
together with independent tensor fields are the basic gravitational field 
variables.

These results seem to indicate that EGRG is the only possible theory of 
gravitation and that the breakdown of physics referred to in the introduction 
is inevitable. However there is a remaining possibility in assuming that the 
gik are not among the truly fundamental gravitational variables, but that the 
latter are a set of tensor variables from which the metric quantities can be 
derived uniquely. Such a set of 16 independent variables are the components 
of so-called tetrad vector fields which determine the 10 metric components 
gtk by simple algebraic relations.

In a paper16) from 1961 it was shown that a tetrad description of gravita­
tional fields also allows a more rational treatment of the energy-momentum 
complex than in a theory based on the metric tensor alone. In 1963 Pellegrini 
and Piebanski17) gave a Lagrangean formulation of the theory and a paper18) 
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from 1966 contains a survey of all the investigations on the energy-momen­
tum complex in general relativity.

The advantage of using tetrads as gravitational variables is connected 
with the fact that this allows to construct expressions for the energy-momen­
tum complex which have more satisfactory transformation properties than 
in a purely metric formulation. However in the just mentioned investigations 
the admissible Lagrangeans were limited by the assumption that the equa­
tions determining the metric tensor should be exactly equal to the field 
equations of Einstein. In the present situation, where we are looking for 
metric field equations which deviate from Einstein’s field equations in the 
case of strong gravitational fields, a wider class of Lagrangeans are admis­
sible. In the following sections we shall see that this freedom can be used to 
construct a consistent theory of gravitation in which all the important pro­
perties A —E are retained and which deviates from Einstein’s theory in the 
case of strong fields only.

2. The Basic Notions in a Tetrad Theory of Gravitation

In this section we shall give a survey of the basic notions of tetrad 
theories already contained in the paper reference 16, to which we shall 
frequently refer in what follows (the reader is requested to disregard § 6 
in ref. 16).

At the out-set, before anything is filled into it, space-time is assumed to 
be just a continuum of points with arbitrary coordinates (a4) but without 
any geometrical properties. A gravitational field in this space is described by 
four independent contravariant vector fields h^x). Here a = 1,2,3,4 is an 

a
index numerating the four vectors and i = 1,2,3,4 is a contravariant vector 
index, which means that the transform as the coordinate differentials dxl 

a
under all coordinate transformations. There are thus sixteen independent 
gravitational field variables in this theory in contrast to the ten f/a- in EGRG.

Consider the determinant
7i = def(7d) (2.1)

a

with the element TH in the a’th row and the i’th column. We shall assume 
a

that this determinant is nowhere zero, i.e.

7i + 0. (2.2)
a

Then we can define a new set of sixteen variables hi by the equations
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hdd = ô£ = (Kronecker symbol). (2.3)
b

The solutions of these equations are obviously (lie components of four 
a

covariant vectors. If Mt is the conjugate minor of the element in the deter­
minant (2.1) the solutions of the equations (2.3) are

hi = Mi/h. (2.4)
Therefore we also have

ldhk = = (Kronecker symbol). (2-5)a

From (2.3) we get, using a well-known theorem from the theory of deter­
minants,

det^ld) • det(hi) = 1, (2.6)
' a

a a
where det(hi) is the determinant with hi in the a’th row and the z’th column.

Let Ea be a quantity with components

£a = 1, a = 1,2,3, £4 = -1, (2.7)

equal to the diagonal elements in the constant Minkowski matrix = T]ab, 
i.e.

rjab = rjab = £a)(5®, (2.8)

where the parenthesis in a) indicates no summation over a although it ap­
pears twice in the expression on the right hand side of (2.8). Now we 

a .
define two sets of vectors Id and hi by

a
a
Id = T]abld = Eayld

b a
b a

hi — rjabhi = Ea)hi
a

and the inverse relations
a a

Id = Ea)ld, hi = EU)hi, 
a a

i.e. the tetrad indices a,b, . . . are lowered and raised by means of the 
Minkowski matrix.

The presence of a gravitational field }d(x) endows the space-time con- 
a

tinuum with definite geometrical properties. In the first place we can define 
a metric in this space with a metric tensor
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Qik = hihk = eahihk = gu, (2.11)
a a a

which obviously is a symmetric covariant tensor. Its determinant 
g = detÇgtk') is

g = det(hi) • det(hk) = ~ To (2.12)
a rd

on account of (2.6), (2.1) and the relation

def (hi) = - def (hi) (2.13)
a

following from (2.9) and (2.7). According to (2.12) and (2.2) g is always 
negative which means that the metric of space-time defined by (2.11) is 
pseudo-Riemannian like in EGRG. Ry a suitable choice of coordinates dd it 
is then always possible to make the values of and their first order deriva­
tion at a given event point P equal to the values in a local Lorentzian system 
of coordinates:

gik(P} = r\ik, gik,i(P) = o. (2-14)

From (2.11) and (2.3) we get

gikhk = hthkhk = htô^ = hi (2.15)
a b a b a

which shows that hi and Id are the covariant and contravariant components, 
a a

respectively, of one and the same tetrad vector. The contravariant com­
ponents of the metric tensor are then

gik = ldhk = eaidhk. (2.16)
a a a

Tensor indices are raised and lowered by means of the metric tensor. For 
a given metric the curvature of space-time can be defined as in EGRG and, 
as already mentioned, the only usable invariant which can be constructed 
from the gik and their derivatives is the curvature scalar R.

However the gravitational field Id endows space-time with other geo- 
a

metrical properties besides curvature viz. those connected with the notion 
of torsion. Thus it is not a simple Riemannian space but rather a space of 
the type considered first by Weizenböck19). If we multiply (2.3) by ea we get

hild = EaÔ% = T]ab,
a b

(2-17)
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which shows that the four vectors 7i/ are mutually orthogonal unit vectors 
a

in the space with the metric gik. The vectors 7d (a = 1,2,3) have positive 
a

norm and are called space-like while the norm of the “time-like” vector 
7d is -1. Thus space-time can he pictured as a pseudo-Riemannian space 
4
with a built-in tetrad lattice.

Since space-time is more general here than in EGRG we can form a 
larger number of tensors and invariants. In the first place we can form the 
tensor

a a
yiki = hihk-,1 = hihk-,1 = ~yku- (2.18)

a a

Here hk;i is the usual covariant derivative of the vector 7i*,  i.e.
a a

hk;l = hk l-hrrrM, (2.19)
a a a

where rkl is the Christoffel symbol corresponding to the metric gik. The 
antisymmetry in the indices i and k follows from the vanishing of the 
covariant derivative of gik'.

a a
0 = gik-,i = hi}ihk + hihk-,i = (2.20)

a a

Obviously yiki is a homogeneous linear function of the first order partial 
derivatives of the tetrad vectors. In fact one has (see ref. 16, B.l, A. 11 and 
A. 15)

yikl — ~%P i/clr hr h s, t — ~ Piklrsthghr, t (2.21)
a a

where

and
Pikirst = ^gkpt + ôrkgnst - ôi gilcst (2.22)

gkPt = (2.23)

are tensors that do not depend on the derivatives of the tetrad vectors. The 
a

same holds for the coefficients of hs,t and of hr,t in (2.21). The tensor ytki 
a

is closely related to the Ricci rotation coefficients (ref. 16, 3.8) and to the 
torsion (ref. 16, 5.14, 5.15).

A space of the Weitzenböck type has teleparallelism (ref. 16, § 5). Two 
vectors at distant points Pi and P2 may be defined as parallel when they 
have equal components relative to the tetrad lattice. This leads to a new type 
of parallel displacement and covariant differentiation of vectors with an 
affine connection
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(2-24)

It differs from the usual affine connection jT^ in a pure Riemannian space 
by the relation (ref. 16, 5.9)

Ahl = Th + y^i- (2.25)

The covariant derivatives of the second kind of a vector field with com­
ponents A1 and Ak are

Ai\i = A\ i + Al/ciAk = A1 -i + yikiAk 1
(2.26) 

= Ak, i - AkiAi = Ak;i — ytkiAi

with obvious generalizations for tensors of higher rank.
When (2.11) is used in the usual expression for the curvature tensor, 

R[lm appears as a function of the tensor ytki and its first order covariant 
derivatives. In (ref. 16, D. 6) it is given in terms of derivatives of the second 
kind. In terms of the usual derivatives we have

Rhlm = yikm-,l-y‘lkl-,m + yiriyrkm-y','rmyrkl- (2.27)

Further, if <I>k is the vector obtained by contraction of yhi

^k = ylkî = — ykh = -hkhi-,t, (2.28)
a

the curvature scalar R can be written in the form

R = - + yrstytsr - &r&r'

Here we have used (ref. 16, A. 5—A. 7), (2.28) and

yrstytsr = hr;Shs;r
a

(2.29)

(2.30)

following from (2.18) and (2.17).
For a given tetrad field 1 the metric field is uniquely given by (2.11), 

a
(2.16). However a given metric gik does not determine the tetrad field com­
pletely; for any Lorentz rotation of the tetrads leads to a new set of tetrads 
/F which also satisfy all the relations (2.2-16). Arbitrary point dependent 
a
Lorentz rotations of the tetrads are given by

V = £>&(x)/d, J = f\Q(x)/A (2.31)
a a b b

Mat.Fys.Medd.Dan.Vid.Selsk. 89, no. 13. 2
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where the rotation coefficients Q (,-r) and the functions
a

= Ea) Eb) Qb(2.32) 
b a

are scalars satisfying the Lorentz conditions

QCbQ = CQ Qb = ôab, (2.33)
Hence a c ac

ÅW = oc aQhW = ôcbhibhk = gik (2.34)
a a b c c

for arbitrary functions Qb(.r) satisfying (2.33).
a

Since the Lorentz group is a 6-parametric group, the general solution 
7d(x) of (2.16) for a given metric contains six arbitrary functions. Therefore, 
a
besides ten equations determining the metric as in EGRG, the field equations 
in the present theory must contain six further equations. It should be 
noticed, however, that a Lorentz rotation (2.31) with constant Qb does not 

a
change neither g^ nor yiki- In this case Å*  and 7zï define a space-time with 

a a
identical curvature and torsion, i.e. the two tetrad lattices describe the same 
physical situation. However, apart from a constant Lorentz rotation the 
tetrad field must be completely determined by the field equations.

The situation in special relativity is characterized by a vanishing torsion, i.e.

ytki = 0 (2.35)

which by (2.27) entails a vanishing curvature:

Riklm = 0 (2.36)

This equation allows the introduction of a pseudo-Cartesian system of co­
ordinates with

gik = = gik. (2.37)

Then the equation (2.35) gives

7i*;*  = 7i*,*  = 0 (2.38)
a a

i.e. the 7d are constant in this system of coordinates and by a suitable 
a

constant Lorentz rotation we can make

h*  - . (2.39)
a

For an insular matter system, (2.37) and (2.39) can be chosen as the limiting 
values of gtk and hl for spatial distances r -> co.
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3. The General Form of the Field Equations

In accordance with I) we assume that the field equations are derivable 
from a Lagrangean principle. The gravitational part S = - g L of the
Lagrangean density must be a scalar density under coordinate transforma­
tions, i.e. L is a scalar constructed from the gravitational potentials 7ii and 
their derivatives of the first order

L = L(ld, h\k) 
a a (3.1)

(higher order derivatives in (3.1) would violate condition E). Since a con­
stant rotation of the tetrads shall have no physical effect we have to require 
that L is invariant also under the group of constant Lorentz rotations. Ac­
cording to (2.21) the tensor y«*z  is a linear homogeneous function of the first 
order derivatives of lhe tetrads and it is invariant under constant Lorentz 
rotations. Furthermore it is essentially the only tensor with these properties. 
Therefore L must be a scalar constructed from the yaz and the metric 
tensor gtk.

The variation of the Lagrangean integral under arbitrary variations ôhi 
that vanish at the boundary of the region of integration is

where
<5S
ôh* did

(3-2)

(3.3)

is the variational derivative of 2 with respect to 7ib (3.2) may also be written 
a

<5j üdx = J* Vikhkôhi|/— gdx, (3-4)

where Vtk is the tensor
1 as

(3-5)

From (2.16) we get for the variation of gik corresponding to the variation

a
2*
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ôgik = + tødld
a a

= IdôhK + Irföld = ôgki.
a a

If we define a quantity ôfik by

we have

ôfik — Jdôhk — = — ôfki
a a

hkôhi = ^(ôgik — ôfik}. 
a

Thus (3.4) may be written

with

<5 f £cte = J(Sik&gik + Fikôfik} ]/ - g dx

Sik = iV (ik) = Ski

Fik = ~ lV[ifc] = —Fki.

As usual V(M) and V[a] denote the symmetrical and antisymmetrical com­
binations, respectively, i.e.

V (ik) = 2 (Vik + Vki) I
(3.11) 

V[U] = i(Vik-Vki). I

By well-known methods we can derive an identity involving Sik and Fik 
from the invariance of the Lagrangean integral födx under arbitrary in­
finitesimal coordinate transformations

= xl + £*(æ) .

The corresponding “local” variations of gik and Id are 
a

^gik = gil^k t + glk ^i  gik

ôhi = hl^,i — h'1,^1
a a a

and, by (3.7) and (2.16),

i/c — I_Cfkl i

+ (71*71*,  i - ldhk,1) Ç1.
a a

(3-12)

(3.13)

(3.14)

Introduction of (3.13) and (3.14) into (3.9) gives after partial integrations
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Zdx = -Fklyicu}^\/- gdx = 0. (3.15)

for arbitrary £*(æ)  vanishing at the boundary. Hence the identity

Sik-,k — Fik-,k — Fklykii- (3.16)

Let denote the usual Lagrangean density of a macroscopic body, 
which in addition to the matter variables depends on the metric tensor only. 
Then the variation of the gravitational variables gives

(3.17)

where Ttk is the energy-momentum tensor of the matter. By means of (3.9) 
and (3.17) the Lagrangean principle for the gravitational field in the presence
of matter is

ô (L + Lm)|/- gdx2m) dx

(3.18)

for arbitrary variations did of the 16 functions Id. These variations may be 
a a

written

where the

ôh^eïd (3.19)
a ab

e (x) = ôld-hi(x') (3.20)
ab ab

are 16 independent infinitesimal functions. Writing e as a sum of a sym- 
. ab

metrical and antisymmetrical part

we get

with

The latter variation is obviously an infinitesimal Lorentz rotation of the 
type (2.31), (2.33) with
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& = ^a + M = + £b) W,
a a ab

(3.24)

which leaves gik unchanged. In fact we get from (3.6), (3.7) and (3.23)

and

= (co + a)')hihk = 0 
ab ba

Ô(r)fik = 2CO
ab

^(d)9ik = 2ffllihk
ab

Ô(d)fik = 0.

(3.25)

- (3.26)

According to (3.22), (3.25), (3.26) a general variation ôh1 is composed 
a

of 10 independent “dilations” for which ôfik = 0 and 6 independent 
a

“rotations” ô^h1 for which ôglk = 0. Therefore the variational principle 
a

(3.18) leads to the field equations

Sik+Tik = 0, (3.27)

Fik = 0. (3.28)

The 10 + 6 field equations (3.27), (3.28) determine the 16 tetrad functions 
apart from arbitrary constant Lorentz rotations. From (3.27) and the iden­
tity (3.16) we get

Tik-,k = -Sik;k = — Ftk -fk + Fklykn = 0

on account of (3.28), i.e. the usual conservation law (1.2) is a consequence 
of the field equations as in Einstein’s theory.

With an arbitrary L constructed from the yiki and gtk we have thus a for­
malism in which all the essential properties A-E are valid. In particular the 
equivalence principle is valid exactly and the world line of a freely falling 
particle is a geodesic in the space with the metric (2.11), but the metric 
determined by (3.27), (3.28) will of course in general be different from the 
metric following from Einstein’s field equations. Moreover a theory of this 
type will give a more satisfactory expression for the energy-momentum 
complex, since the necessary conditions formulated in ref. 18 are satisfied 
in the present formalism.
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4. The Choice of Lagrangean

The arbitraryness in the choice of Lagrangean is decisively limited by 
the essential requirement that the theory must give the same results as EGRG 
for the gravitational phenomena inside the solar system. Since L is an in­
variant constructed from the ytki and gik the simplest possible independent 
expressions are

£(1) = £(2) = yrstyrst,
(4.1)

LW = yrstytsr 1

where &k is the vector (2.28)

&k = y^ki- (4-2)

On account of (2.21) the expressions Zd”) in (4.1) are homogeneous functions 
of the first order derivatives 7ir,« of degree 2. The next simplest algebraic 

a
expressions are obviously of degree 4 and there are not less than twelve 
different independent expressions of this type.

In the simplest case L is a linear combination of the quantities (4.1)

2 = f = /- g^v}-

V = 1
For each v we have an equation of the form (3.9)

- J(s£W‘ +V“)|/-g<ix,

and with (4.3) we obtain

s« - 2 «rSff
V = 1

Fa - 2 «.W-
V = 1

A lengthy but elementary calculation gives the following explicit expressions 
for Sff and F$> :

= i(&i;k + $k-, ) - + ;l + 1^Z^Z),
Stk = ylik-,i + ylki-,i + yrsiyrsk-igikyrstyrst,

= i[ylik-,i + ylki-,i\- i[yrstykrs + yrskyirs]~ igtkyrstytsr

(4-3)

(4.4)

(4-5)

(4-6)
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Fik = FS} = = &k,i-<&l(ylik~ylki'j]

F% = -7^U-

The Langrangean density

Q(0) = £(3)_£(1) = ]/-g(yrstytsr -Qi®1'} (4.8)

lias the remarkable property that j£(0)(fø is invariant under arbitrary in­
finitesimal Lorentz rotations of the tetrads ; for we have, since F$ =

ô f SWx = f (S<? - Sff) ôg™ ^g dx. (4.9)

J U-7)

This is in accordance with the fact shown in (ref. 16, Appendix A), that 
S(0) is equal to the Lagrangean density l/- g R in Einstein’s theory, apart 
from a usual divergence which can be disregarded in the variations con­
sidered. Thus

4&™dx (4-10)

where Gtk is the Einstein tensor in (1.3). A comparison of (4.9) and (4.10) 

8'VeS Ga-Sg'-Sff (4.11)

in accordance with (ref. 16, 1). 7, D.8).
We shall now choose the constants ocv such that our theory gives the same 

results as EGRG in the linear approximation of weak fields. In a suitable 
system of coordinates we have in this case

gtk = + (4.12)

where the small quantities gtk satisfy the de Donder relations

&kgik,k — 2y,i> y — Skykk- (4.13)

Then, neglecting terms of the second order in ytk, Einstein’s equations (1.3) 
reduce to

where
2 (Oytk — 2 gik\Z\ i/) — — nTtk, (4.14)

□ = £*
d2

eft* 2
(4.15)

is the usual d’Alembertian.
In the same approximation the tetrads

hi = g ai + iyai 
a

(4.16)
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obviously satisfy (2.11) with given by (4.12), 
using (4.13)

yiki = %(yki,i-yu,k) 

&k = - iy,k.

and from (4.16) we get

(4.17)

These quantities are small of 1. order. Therefore, neglecting terms of 2. order 
and using (4.13), the equations (4.6) and (4.7) give

= i(^6*+  &k,i) - 'l']ikEl(&l,l 

= KvikDy-y.t.k),

Sffl = -Sik} = eiyiik,l + Eiyiki,l

— D yik ~ iy ,i,k,

F$> = Fff = l^k-Qk,^ - o 1
Fik = -£iyikl,l = - i(£iykl,i,l - £iyu,k,l) I (4-19) 

= - Ky, *,<-«/,<,*)  = 0.

From the latter equations and (4.5) we see that the expressions (4.16) 
satisfy the field equations (3.28):

Fik = 0, (4.20)

and it can be shown (ref. 16, § 4) that (4.16) are the only expressions satis­
fying (4.20), apart of course from physically unimportant constant Lorentz 
rotations.

With (4.18) we get for Stk in (4.5)

(4.21)

When (4.21) is introduced into the field equations (3.27), it is seen that the 
latter equations be identical with the linear Einstein equations (4.14), if we 
choose 

ai =
1 2

, «2 = - a3 = - (1 - 22)
x

(4.22)

with 2 equal to an arbitrary dimensionless constant. With these values for 
the <xv we get from (4.5), (4.6), (4.7) and (4.11)
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^ilc = -Sff+ÂSg>+Sg)-2ÂSg)

For 2 = 0 the present theory is identical with Einstein’s theory, but for 
2 + 0 the field equations (3.27), (3.28) take the form

Gik + Hik = -xTtk, (4.24)

2F^-Fi2) = + = 0. (4.25)

Hik = A[yrsiyrsk + yrstykrs + yrsk?irs + gik(yrstytsr - lyrst'yrst)l ‘ (4.26)

The equations (4.25) are independent of the choice of 2. On the other 
hand the term Hu, by which (4.24) deviates from Einstein’s field equations 
(1.3) increases with 2, which can be taken of order 1 without destroying 
the first order agreement with Einstein’s theory in the weak field case. One 
might hope, therefore, that the metric obtained as solution of (4.24), (4.25) 
would be quite different from the solution of (1.3) in the case of strong 
fields and that it be free of singularities. In the next section we shall in­
vestigate this point by considering the case of a spherically symmetric system.

5. The Spherically Symmetric Case

In the case of a static spherically symmetric system the equations (4.24),
(4.25) are most easily solved if we use a system of isotropic coordinates 
xl = {xl, c/}. Here the metric is of the form

1
gtk = guyàik, gik = — du, /K

gu) (a-1)
gu = {a, a, a, - b},

where a and b are functions of r = x‘x‘ only. A possible set of tetrads in 
accordance with (2.11) and (5.1) is

Jli = gu)^ = Ea)]/\gaa\bai
(5-2)
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from which we get the following expression for the tensor (2.18) and the 
vector (4.2) (see ref. 16, B.4, B.8)

and

g'iptr)
2

(ni Sri - n^ôn)ytki =

(5.3)

Øfc = - (lna\/b),k = - (lna]/b)'nk. (5-4)

By calculating the functions (4.7) with (5.3), (5.4) and (5.1) one finds 
(see the corresponding calculations in ref. 16, Appendix B)

F&> - FS' = F® - 0, Fa - 0 (5-5)

Thus the tetrads (5.2) satisfy the field equations (4.25), and it can be shown 
that (5.2) are the only tetrads satisfying these equations, again apart from 
constant rotations of the tetrads.

Using (5.3) and (5.1) we get for the different terms in (4.26)

i.e.

yrstyrsk — — %y rsiykrs — -2yrSkyirs

(gn)')2
2 a g a

A a'2
Oik~ — nillk

2ch

a'2 b'2
yrstyrst = 2yrstytsr = 3 +

ad 2ab^

(5-6)

Hik = 0. (5-7)

Thus, in the static spherically symmetric case the equations (4.24) have the 
same solutions as Einstein’s equations (1.3). In the empty space outside the 
matter they lead to the following equations for a(r) and &(r):

(5-8)

with the well-known solutions
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a = (1 + a/4r)4, b =
(1 — a/4r)2
(1 + a/4r)2

(5.9)

The functions u(r) and &(r) in (5.9) are everywhere positive except at the 
Schwarzschild distance r = a/4 where &(r) has the minimum value zero. 
It would seem that only a small change of the equations (5.8) is necessary 
to make the minimum value of &(r) positive and thus remove the singularity.

So far we have only considered the static case. As an important example 
of a time-dependent spherical system we shall now consider the case of the 
non-static homogeneous isotropic universe. In suitable coordinates the 
metric has the form given by Robertson and Walker, i.e.

gtk = gu) ôik, g a = {a, a, a, - 1}

V’O’)2’ y>(r) = 1 +Cr2/4a
(5.10)

With tetrads of the form (5.2) we get in this case

and

(5.11)

(5.12)

Calculating the tensors (4.7) with (5.11) and (5.12) we obtain

OÏ’ - -F43’ - iFiV " (lnR)a(ln¥),*-(lnR), lc(ln'P),(, (5.13) 

which shows that the field equations (4.25) are satisfied with M given (5.2). 
Further we get for the different terms in (4.26)

yrsiyrsk — 2.yrsiykrs — ~ 2yrskytrs

0 for i=4 or k = 4

for i = I, k = K 
(5.14)
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Thus, Hik vanishes also in this case, and the metric following from the 
present formalism is again given by the Friedman solution which has a 
singularity in the far past and for £ = 1 also in the far future.

As we have seen the simple Lagrangean density

ß = l[ß(0) +2(ß<2) - 2S<3>)], (5.15)
x

which leads to the field equations (4.24) —(4.26), does not solve our problem. 
However, as mentioned before there is a large variety of possible expressions 
£<4> of degree 4, and with

ß = lß(0) + ß(4) (5.16)
x

the variational principle leads to equations of the form (4.24) with a non­
vanishing Hik in the static spherically symmetric case. Instead of (5.8) we 
get then

„ 2a' 3 a'2 „
a" +------ - - f

r 4 a

/a' 2\b' 2a'
— + - — + — + 

\a rib ra

where f and g in general are algebraic functions of a, b, a', b', a" and b" 
depending on the choice of £(4). Besides terms of degree 4, which in the case 
of weak fields give contributions to Hik that are small of the third order, we

1 3
may in 2<4> also include terms of the type - 2 with sufficiently small 

v = 1
dimensionless constants Xv. It would be surprising if not one of the many 
possible Lagrangeans would lead to equations (5.17) with everywhere posi­
tive solutions a(r), ô(r). On the contrary one could rather fear that there 
are too many Lagrangeans that have singularity free solutions, in which case 
it would be difficult to obtain a uniquely determined theory without a new 
guiding principle.
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Conclusion

In the present paper we have not arrived at a definite formalism which 
can replace Einstein’s precise equations. We have shown only that the break­
down of physics predicted by Hawking on the basis of Einstein’s theory does 
not seem to be inevitable. If we admit that the fundamental gravitational 
field variables are tetrad fields, the way is open for generalizations of Ein­
stein’s theory which retain all the satisfactory features A-E as well as the 
experimentally and observationally verified results of EGRG. At the same 
time such a formalism allows a more satisfactory treatment of the energy­
momentum complex, in particular as regards the question of the localizabil­
ity of the energy. Il still remains to be seen if the Lagrangean can be chosen 
in such a way that the field equations in all cases have non-singular solutions.
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